392 research outputs found

    Identification of major factors influencing ELISpot-based monitoring of cellular responses to antigens from mycobacterium tuberculosis

    Get PDF
    A number of different interferon-c ELISpot protocols are in use in laboratories studying antigen-specific immune responses. It is therefore unclear how results from different assays compare, and what factors most significantly influence assay outcome. One such difference is that some laboratories use a short in vitro stimulation period of cells before they are transferred to the ELISpot plate; this is commonly done in the case of frozen cells, in order to enhance assay sensitivity. Other differences that may be significant include antibody coating of plates, the use of media with or without serum, the serum source and the number of cells added to the wells. The aim of this paper was to identify which components of the different ELISpot protocols influenced assay sensitivity and inter-laboratory variation. Four laboratories provided protocols for quantifying numbers of interferon-c spot forming cells in human peripheral blood mononuclear cells stimulated with Mycobacterium tuberculosis derived antigens. The differences in the protocols were compared directly. We found that several sources of variation in assay protocols can be eliminated, for example by avoiding serum supplementation and using AIM-V serum free medium. In addition, the number of cells added to ELISpot wells should also be standardised. Importantly, delays in peripheral blood mononuclear cell processing before stimulation had a marked effect on the number of detectable spot forming cells; processing delay thus should be minimised as well as standardised. Finally, a pre-stimulation culture period improved the sensitivity of the assay, however this effect may be both antigen and donor dependent. In conclusion, small differences in ELISpot protocols in routine use can affect the results obtained and care should be given to conditions selected for use in a given study. A pre-stimulation step may improve the sensitivity of the assay, particularly when cells have been previously frozen

    Whole-blood transcriptomic signatures induced during immunization by chloroquine prophylaxis and Plasmodium falciparum sporozoites

    Get PDF
    A highly effective vaccine that confers sterile protection to malaria is urgently needed. Immunization under chemoprophylaxis with sporozoites (CPS) consistently confers high levels of protection in the Controlled Human Malaria infection (CHMI) model. To provide a broad, unbiased assessment of the composition and kinetics of direct ex vivo human immune responses to CPS, we profiled whole-blood transcriptomes by RNA-seq before and during CPS immunization and following CHMI challenge. Differential expression of genes enriched in modules related to T cells, NK cells, protein synthesis, and mitochondrial processes were detected in fully protected individuals four weeks after the first immunization. Non-protected individuals demonstrated transcriptomic changes after the third immunization and the day of treatment, with upregulation of interferon and innate inflammatory genes and downregulation of B-cell signatures. Protected individuals demonstrated more significant interactions between blood transcription modules compared to non-protected individuals several weeks after the second and third immunizations. These data provide insight into the molecular and cellular basis of CPS-induced immune protection from P. falciparum infection

    Interleukin (IL)–12 and IL-23 Are Key Cytokines for Immunity against Salmonella in Humans

    Get PDF
    Patients with inherited deficiency of the interleukin (IL)–12/IL-23–interferon (IFN)–g axis show increased susceptibility to invasive disease caused by the intramacrophage pathogens salmonellae and mycobacteria. We analyzed data on 154 patients with such deficiency. Significantly more patients with IL-12/IL-23–component deficiency had a history of salmonella disease than did those with IFN-g–component deficiency. Salmonella disease was typically severe, extraintestinal, and caused by nontyphoidal serovars. These findings strongly suggest that IL-12/IL-23 is a key cytokine for immunity against salmonella in humans and that IL-12/IL-23 mediates this protective effect partly through IFN-g–independent pathways. Investigation of the IL-12/IL-23–IFN-g axis should be considered in patients with invasive salmonella disease

    Multifunctional T cell response to DosR and Rpf antigens is associated with protection in long-Term mycobacterium tuberculosis-infected individuals in Colombia

    Get PDF
    ABSTARCT: Multifunctional T cells have been shown to be protective in chronic viral infections. In mycobacterial infections, however, evidence for a protective role of multifunctional T cells remains inconclusive. Short-term cultures of peripheral blood mononuclear cells stimulated with the Mycobacterium tuberculosis RD1 antigens 6-kDa early secretory antigenic target (ESAT6) and 10-kDa culture filtrate antigen (CFP10), which are induced in the early infection phase, have been mainly used to assess T cell multifunctionality, although long-term culture assays have been proposed to be more sensitive than short-term assays for assessment of memory T cells, which are essential for long-term immunity. Here we used a long-term culture assay system to study the T cell immune responses to the M. tuberculosis latency-associated DosR antigens and reactivation-associated Rpf antigens, compared to ESAT6 and CFP10, in patients with pulmonary tuberculosis (PTB) and household contacts of PTB patients with long-term latent tuberculosis infection (ltLTBI), in a community in which M. tuberculosis is endemic. Our results showed that the DosR antigens Rv1737c (narK2) and Rv2029c (pfkB) and the Rv2389c (rpfD) antigen of M. tuberculosis induced higher frequencies of CD4+ or CD8+ mono- or bifunctional (but not multifunctional) T cells producing interferon gamma (IFN-γ) and/or tumor necrosis alpha (TNF-α) in ltLTBI, compared to PTB. Moreover, the frequencies of CD4+ and/or CD8+ T cells with a CD45RO+ CD27+ phenotype were higher in ltLTBI than in PTB. Thus, the immune responses to selected DosR and Rpf antigens may be associated with long-term latency, correlating with protection from M. tuberculosis reactivation in ltLTBI. Further study of the functional and memory phenotypes may contribute to further discrimination between the different states of M. tuberculosis infections

    Gene expression profiles classifying clinical stages of tuberculosis and monitoring treatment responses in Ethiopian HIV-negative and HIV-positive cohorts.

    Get PDF
    BACKGROUND: Validation of previously identified candidate biomarkers and identification of additional candidate gene expression profiles to facilitate diagnosis of tuberculosis (TB) disease and monitoring treatment responses in the Ethiopian context is vital for improving TB control in the future. METHODS: Expression levels of 105 immune-related genes were determined in the blood of 80 HIV-negative study participants composed of 40 active TB cases, 20 latent TB infected individuals with positive tuberculin skin test (TST+), and 20 healthy controls with no Mycobacterium tuberculosis (Mtb) infection (TST-), using focused gene expression profiling by dual-color Reverse-Transcription Multiplex Ligation-dependent Probe Amplification assay. Gene expression levels were also measured six months after anti-TB treatment (ATT) and follow-up in 38 TB patients. RESULTS: The expression of 15 host genes in TB patients could accurately discriminate between TB cases versus both TST+ and TST- controls at baseline and thus holds promise as biomarker signature to classify active TB disease versus latent TB infection in an Ethiopian setting. Interestingly, the expression levels of most genes that markedly discriminated between TB cases versus TST+ or TST- controls did not normalize following completion of ATT therapy at 6 months (except for PTPRCv1, FCGR1A, GZMB, CASP8 and GNLY) but had only fully normalized at the 18 months follow-up time point. Of note, network analysis comparing TB-associated host genes identified in the current HIV-negative TB cohort to TB-associated genes identified in our previously published Ethiopian HIV-positive TB cohort, revealed an over-representation of pattern recognition receptors including TLR2 and TLR4 in the HIV-positive cohort which was not seen in the HIV-negative cohort. Moreover, using ROC cutoff ≥ 0.80, FCGR1A was the only marker with classifying potential between TB infection and TB disease regardless of HIV status. CONCLUSIONS: Our data indicate that complex gene expression signatures are required to measure blood transcriptomic responses during and after successful ATT to fully diagnose TB disease and characterise drug-induced relapse-free cure, combining genes which resolve completely during the 6-months treatment phase of therapy with genes that only fully return to normal levels during the post-treatment resolution phase

    Atypical Human Effector/Memory CD4+ T Cells With a Naive-Like Phenotype

    Get PDF
    The induction of adaptive immunological memory, mediated by T and B cells, plays an important role in protective immunity to pathogens induced by previous infections or vaccination. Naive CD4+ T cells that have been primed by antigen develop into memory or effector cells, which may be distinguished by their capability to exert a long-term and rapid response upon re-challenge by antigen, to produce distinct cytokines and surface marker expression phenotypes such as CD45RA/RO, CD27, CD62L, and CCR7. Moreover, a distinct lineage of memory T cells populates tissues (tissue-resident memory T cells or TRM cells) which orchestratea the response to pathogens re encountered at tissue sites. Recent evidence, however, has highlighted that CD4+ naive T cells are much more heterogeneous that previously thought, and that they harbor diversity in phenotypes, differentiation stages, persistence, functions, and anatomic localizations. These cells represent cellular subsets that are extremely heterogeneous and multifunctional at their very initial stages of differentiation, with the potential to become “atypical” memory and effector cells. In this mini review, we focus on recently obtained data from studies in humans, in which this newly recognized heterogeneity in the naive T cell pool was discovered in terms of surface marker expression, cytokine production, or transcriptomic profiles. The deep analysis of immune functions at the single cell level combined with a better understanding of the generation and maintenance of the various atypical memory CD4+ T cell subsets with a naive-like phenotype will be important in immune-monitoring of vaccination and immunotherapies in infectious diseases

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    High prevalence of subclinical tuberculosis in HIV-1-infected persons without advanced immunodeficiency: implications for TB screening

    Get PDF
    Background The prevalence of asymptomatic tuberculosis (TB) in recently diagnosed HIV-1-infected persons attending pre-antiretroviral therapy (ART) clinics is not well described. In addition, it is unclear if the detection of Mycobacterium tuberculosis in these patients clearly represents an early asymptomatic phase leading to progressive disease or transient excretion of bacilli. Objective To describe the prevalence and outcome of subclinical TB disease in HIV-1-infected persons not eligible for ART. Methods The study was conducted in 274 asymptomatic ART-naive HIV-1-infected persons in Khayelitsha Day Hospital, Cape Town, South Africa. All participants were screened for TB using a symptom screen and spoligotyping was performed to determine genotypes. Results The prevalence of subclinical TB disease was 8.5% (95% CI 5.1% to 13.0%) (n = 18; median days to culture positivity 17 days), with 22% of patients being smear-positive. Spoligotyping showed a diverse variety of genotypes with all paired isolates being of the same spoligotype, effectively excluding cross-contamination. 56% of patients followed up developed symptoms 3 days to 2 months later. All were well and still in care 6-12 months after TB diagnosis; 60% were started on ART. A positive tuberculin skin test (OR 4.96, p = 0.064), low CD4 count (OR 0.996, p = 0.06) and number of years since HIV diagnosis (OR 1.006, p = 0.056) showed trends towards predicting TB disease. Conclusion This study found a high prevalence but good outcome (retained in care) of subclinical TB disease in HIV-1-infected persons. The results suggest that, in high HIV/TB endemic settings, a positive HIV-1 test should prompt TB screening by sputum culture irrespective of symptoms, particularly in those with a positive tuberculin skin test, longer history of HIV infection and low CD4 count. Operational difficulties in resource-constrained settings with respect to screening with TB culture highlight the need for rapid and affordable point-of-care tests to identify persons with clinical and subclinical TB disease.Immunogenetics and cellular immunology of bacterial infectious disease

    A Systematic Review on Novel Mycobacterium tuberculosis Antigens and Their Discriminatory Potential for the Diagnosis of Latent and Active Tuberculosis

    Get PDF
    Background: Current immunodiagnostic tests for tuberculosis (TB) are based on the detection of an immune response toward mycobacterial antigens injected into the skin or following an in-vitro simulation in interferon gamma-release assays. Both tests have limited sensitivity and are unable to differentiate between tuberculosis infection (LTBI) and active tuberculosis disease (aTB). To overcome this, the use of novel Mycobacterium tuberculosis (M. tuberculosis) stage-specific antigens for the diagnosis of LTBI and aTB has gained interest in recent years. This review summarizes current evidence on novel antigens used for the immunodiagnosis of tuberculosis and discrimination of LTBI and aTB. In addition, results on measured biomarkers after stimulation with novel M. tuberculosis antigens were also reviewed.Methods: A systematic literature review was performed in Pubmed, EMBASE and web of science searching articles from 2000 up until December 2017. Only articles reporting studies in humans using novel antigens were included.Results: Of 1,533 articles screened 34 were included in the final analysis. A wide range of novel antigens expressed during different stages and types of LTBI and aTB have been assessed. M. tuberculosis antigens Rv0081, Rv1733c, Rv1737c, Rv2029c, Rv2031 and Rv2628, all encoded by the dormancy of survival regulon, were among the most widely studied antigens and showed the most promising results. These antigens have been shown to have best potential for differentiating LTBI from aTB. In addition, several studies have shown that the inclusion of cytokines other than IFN-γ can improve sensitivity.Conclusion: There is limited evidence that the inclusion of novel antigens as well as the measurement of other biomarkers than IFN-γ may improve sensitivity and may lead to a discrimination of LTBI from aTB

    Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children

    Get PDF
    Pediatric tuberculosis (TB) is challenging to diagnose, confirmed by growth of Mycobacterium tuberculosis at best in 40% of cases. The WHO has assigned high priority to the development of non-sputum diagnostic tools. We therefore sought to identify transcriptional signatures in whole blood of Indian children, capable of discriminating intra-thoracic TB disease from other symptomatic illnesses. We investigated the expression of 198 genes in a training set, comprising 47 TB cases (19 definite/28 probable) and 36 asymptomatic household controls, and identified a 7- and a 10-transcript signature, both including NOD2, GBP5, IFITM1/3, KIF1B and TNIP1. The discriminatory abilities of the signatures were evaluated in a test set comprising 24 TB cases (17 definite/7 probable) and 26 symptomatic non-TB cases. In separating TB-cases from symptomatic non-TB cases, both signatures provided an AUC of 0.94 (95%CI, 0.88–1.00), a sensitivity of 91.7% (95%CI, 71.5–98.5) regardless of culture status, and 100% sensitivity for definite TB. The 7-transcript signature provided a specificity of 80.8% (95%CI, 60.0–92.7), and the 10-transcript signature a specificity of 88.5% (95%CI, 68.7–96.9%). Although warranting exploration and validation in other populations, our findings are promising and potentially relevant for future non-sputum based POC diagnostic tools for pediatric TB.publishedVersio
    corecore