880 research outputs found

    Mapping the CMB I: the first flight of the QMAP experiment

    Full text link
    We report on the first flight of the balloon-borne QMAP experiment. The experiment is designed to make a map of the cosmic microwave background anisotropy on angular scales from 0.7 to several degrees. Using the map we determine the angular power spectrum of the anisotropy in multipole bands from l~40 to l~140. The results are consistent with the Saskatoon (SK) measurements. The frequency spectral index (measured at low l) is consistent with that of CMB and inconsistent with either Galactic synchrotron or free-free emission. The instrument, measurement, analysis of the angular power spectrum, and possible systematic errors are discussed.Comment: 4 pages, with 5 figures included. Submitted to ApJL. Window functions and color figures are available at http://pupgg.princeton.edu/~cmb/welcome.htm

    Cosmic Reionisation by Stellar Sources: Population II Stars

    Full text link
    We study the reionisation of the Universe by stellar sources using a numerical approach that combines fast 3D radiative transfer calculations with high resolution hydrodynamical simulations. Ionising fluxes for the sources are derived from intrinsic star formation rates computed in the underlying hydrodynamical simulations. Our mass resolution limit for sources is M~ 4.0 x 10^7 h^-1 M_sol, which is roughly an order of magnitude smaller than in previous studies of this kind. Our calculations reveal that the reionisation process is sensitive to the inclusion of dim sources with masses below ~10^9 h^-1 M_sol. We present the results of our reionisation simulation assuming a range of escape fractions for ionising photons and make statistical comparisons with observational constraints on the neutral fraction of hydrogen at z~6 derived from the z=6.28 SDSS quasar of Becker and coworkers. Our best fitting model has an escape fraction of ~20% and causes reionisation to occur by z~8, although the IGM remains fairly opaque until z~6. In order to simultaneously match the observations from the z=6.28 SDSS quasar and the optical depth measurement from WMAP with the sources modeled here, we require an evolving escape fraction that rises from f_esc=0.20 near z~6 to f_esc>~10 at z~18.Comment: 42 pages, 13 figure

    Energy Monitoring & Management System (EMMS)

    Get PDF
    The Energy Monitoring and Management System (EMMS) is developing an electrical power meter to help make electricity more available in energy impoverished regions of the world. The meter fills a unique niche for energy tracking and regulation within micro-grid systems. The EMMS project has partners in Burkina Faso and Zimbabwe: Open Door Development (ODD), the Institut Missiologique du Sahel (IMS), and the Theological College of Zimbabwe (TCZ). Ties are also maintained on a regular basis with IEEE Smart Village for potential future widespread system implementation. Recent work on the EMMS meter has been focused on resolving the last few remaining bugs, establishing a robust communication system, and developing a centralized server-based interface which aids with meter configuration and administration. The team has also begun several future developments which include datalogging and remote access features.https://mosaic.messiah.edu/engr2021/1004/thumbnail.jp

    Predicting ambulatory energy expenditure in lower limb amputees using multi-sensor methods

    Get PDF
    PurposeTo assess the validity of a derived algorithm, combining tri-axial accelerometry and heart rate (HR) data, compared to a research-grade multi-sensor physical activity device, for the estimation of ambulatory physical activity energy expenditure (PAEE) in individuals with traumatic lower-limb amputation.MethodsTwenty-eight participants [unilateral (n = 9), bilateral (n = 10) with lower-limb amputations, and non-injured controls (n = 9)] completed eight activities; rest, ambulating at 5 progressive treadmill velocities (0.48, 0.67, 0.89, 1.12, 1.34m.s-1) and 2 gradients (3 and 5%) at 0.89m.s-1. During each task, expired gases were collected for the determination of and subsequent calculation of PAEE. An Actigraph GT3X+ accelerometer was worn on the hip of the shortest residual limb and, a HR monitor and an Actiheart (AHR) device were worn on the chest. Multiple linear regressions were employed to derive population-specific PAEE estimated algorithms using Actigraph GT3X+ outputs and HR signals (GT3X+HR). Mean bias±95% Limits of Agreement (LoA) and error statistics were calculated between criterion PAEE (indirect calorimetry) and PAEE predicted using GT3X+HR and AHR.ResultsBoth measurement approaches used to predict PAEE were significantly related (Pr = 0.92, bilateral; r = 0.93, and control; r = 0.91, and AHR; unilateral; r = 0.86, bilateral; r = 0.81, and control; r = 0.67). Mean±SD percent error across all activities were 18±14%, 15±12% and 15±14% for the GT3X+HR and 45±20%, 39±23% and 34±28% in the AHR model, for unilateral, bilateral and control groups, respectively.ConclusionsStatistically derived algorithms (GT3X+HR) provide a more valid estimate of PAEE in individuals with traumatic lower-limb amputation, compared to a proprietary group calibration algorithm (AHR). Outputs from AHR displayed considerable random error when tested in a laboratory setting in individuals with lower-limb amputation.</div

    Overcoming phonon-induced dephasing for indistinguishable photon sources

    Get PDF
    Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that generate the photons are subject to interactions with lattice vibrations. Using a microscopic model of electron-phonon interactions and a quantum master equation, we here examine phonon-induced decoherence and assess its impact on the rate of production, and indistinguishability, of single photons emitted from an optically driven quantum dot system. We find that, above a certain threshold of desired indistinguishability, it is possible to mitigate the deleterious effects of phonons by exploiting a three-level Raman process for photon production

    Simulating the influences of groundwater on regional geomorphology using a distributed, dynamic, landscape evolution modelling platform

    Get PDF
    A dynamic landscape evolution modelling platform (CLiDE) is presented that allows a variety of Earth system interactions to be explored under differing environmental forcing factors. Representation of distributed surface and subsurface hydrology within CLiDE is suited to simulation at sub-annual to centennial time-scales. In this study the hydrological components of CLiDE are evaluated against analytical solutions and recorded datasets. The impact of differing groundwater regimes on sediment discharge is examined for a simple, idealised catchment, Sediment discharge is found to be a function of the evolving catchment morphology. Application of CLiDE to the upper Eden Valley catchment, UK, suggests the addition of baseflow-return from groundwater into the fluvial system modifies the total catchment sediment discharge and the spatio-temporal distribution of sediment fluxes during storm events. The occurrence of a storm following a period of appreciable antecedent rainfall is found to increase simulated sediment fluxes

    Melt-Quenched Glasses of Metal–Organic Frameworks

    Get PDF
    Crystalline solids dominate the field of metal-organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal-ligand connectivity of crystalline MOFs, which connects their mechanical properties to their starting chemical composition. The transfer of functionality from crystal to glass points toward new routes to tunable, functional hybrid glasses.T.D.B. would like to thank Trinity Hall (University of Cambridge) for funding. We thank Diamond Light Source for access to beamline B18 (SP14249-1) that contributed to the results presented here. We thank Dr. Giannantonio Cibin and Dr. Stephen Parry for their assistance with the EXAFS measurements. F.B. thanks EPSRC (grant EP/M00869X/1) and the University of Liverpool for funding. O.K.F. gratefully acknowledges funding from the Army Research Office (project number W911NF-13-1-0229). S.A.T.R. is grateful for funding from the Natural Environment Research Council.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/jacs.5b1322

    Melt-Quenched Glasses of Metal-Organic Frameworks

    Get PDF
    Crystalline solids dominate the field of metal?organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal?ligand connectivity of crystalline MOFs, which connects their mechanical properties to their starting chemical composition. The transfer of functionality from crystal to glass points toward new routes to tunable, functional hybrid glasses

    Bolus characteristics based on Magnetic Resonance Angiography

    Get PDF
    BACKGROUND: A detailed contrast bolus propagation model is essential for optimizing bolus-chasing Computed Tomography Angiography (CTA). Bolus characteristics were studied using bolus-timing datasets from Magnetic Resonance Angiography (MRA) for adaptive controller design and validation. METHODS: MRA bolus-timing datasets of the aorta in thirty patients were analyzed by a program developed with MATLAB. Bolus characteristics, such as peak position, dispersion and bolus velocity, were studied. The bolus profile was fit to a convolution function, which would serve as a mathematical model of bolus propagation in future controller design. RESULTS: The maximum speed of the bolus in the aorta ranged from 5–13 cm/s and the dwell time ranged from 7–13 seconds. Bolus characteristics were well described by the proposed propagation model, which included the exact functional relationships between the parameters and aortic location. CONCLUSION: The convolution function describes bolus dynamics reasonably well and could be used to implement the adaptive controller design
    corecore