52 research outputs found

    Estudio y control de la línea de producción del Nuevo-Snack

    Full text link
    [ES] Este trabajo parte de la necesidad de controlar el proceso de producción del ¿Nuevo-Snack¿ para asegurar que el producto de salida tenga las características de calidad deseadas. El principal problema en la fabricación de este producto reside en las constantes modificaciones de los parámetros de la línea productiva por parte de los operarios, forma de operar que puede llevar a errores de sobreajustes del proceso. Por tanto, con este trabajo se pretende aplicar distintas técnicas estadísticas para validar los métodos de medición de las características de calidad de interés y así, poder realizar el estudio y control de éstas. Principalmente, se estudian la salinidad y la humedad del producto. Una vez establecido el mejor método de medida de estas características, se pasa a la Fase I del control estadístico de procesos para estimar su media y su variabilidad. Cuando el proceso es estable, se decide qué tamaño de muestra tomar y el tiempo de muestreo para llevar a cabo la fase de control (Fase II del control estadístico de procesos). Finalmente, se propone un método de control y se realizan varias aplicaciones para que los operarios sepan qué parámetros de la línea variar y en qué cantidad.Tomás Mas, AS. (2016). Estudio y control de la línea de producción del Nuevo-Snack. http://hdl.handle.net/10251/146795TFG

    Tuning fluorescence and singlet oxygen quantum yields of subporphyrazines by axial functionalization

    Full text link
    The axial functionalization of Subporphyrazines (SubPzs) with unreported alkoxy groups, carboxy and carboperoxy rests, as well as sulfanyl, aryl and amino groups, forming B−O, B−S, B−C, and B−N bonds, respectively, has been investigated. The studied oxygen nucleophiles include aromatic and sterically demanding aliphatic alcohols, along with carboxylic acids and peracids. In general, direct substitution of the chloro-SubPz by oxygen nucleophiles of diverse nature proceeds smoothly, with yields of the isolated alkoxy and carboxy-substituted SubPzs ranging from 49 to 100 %. Conversely, direct substitution with sulphur, carbon and nitrogen nucleophiles do not afford the corresponding substituted SubPzs. In these cases, a stepwise procedure involving an axial triflate-SubPz intermediate was employed, affording only the phenyl-SubPz in 8 % yield. The major compound under these conditions was the unreported SubPz μ-oxo dimer, presumably arising from substitution of the triflate-SubPz by the in situ generated hydroxy-SubPz. This result indicates a quite low reactivity of the TfO-SubPz intermediate with carbon, sulphur and nitrogen nucleophiles. All SubPzs prepared in this work exhibited fluorescence at 510–515 nm with quantum yields ranging from 0.1 to 0.24. Additionally, all SubPzs generated singlet oxygen, with ΦΔ values ranging from 0.15 to 0.57, which show no apparent correlation with the axial substituentsPID2020-116490GB-I00, TED2021-131255B-

    A green-to-near-infrared photoswitch based on a blended subporphyrazine-dithienylethene system

    Full text link
    A subporphyrazine (SubPz)-dithienylethene (DTE) photochromic device with 1o and 1c states, was developed and characterized. In this device, the DTE unit can reversibly switch the SubPz absorbance from green to near-infrared [λmax (o/c) = 527 nm/740 nm], as well as the SubPz fluorescence and singlet oxygen quantum yields. The core of this design involves using a highly tunable SubPz chromophore that shares its quasi-isolated ethene moiety with a DTE photoswitchPID2020-116490GB-I00, TED2021-131255B-C43, Comunidad de Madrid MAD2D-CM, SEV2016-068

    Iron Overload Favors the Elimination of Leishmania

    Get PDF
    Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs

    Will ultrathin CIGS solar cells overtake the champion thin-film cells? Updated SCAPS baseline models reveal main differences between ultrathin and standard CIGS

    Get PDF
    Cu(In,Ga)Se2 (CIGS) solar cells are amongst the best performing thin-film technologies, with the latest performance gains being mainly due to recent years improvements obtained with post-deposition treatments (PDT). Moreover, thinning of the absorber layer down to sub-micrometre values (ultrathin absorbers) is of extreme importance for CIGS to be even more cost-effective and sustainable. However, electrical and optical limitations, such as rear interface recombination and insufficient light absorption, prevent the widespread implementation of ultrathin CIGS devices. The recent electrical CIGS simulation baseline models have failed to keep up with the experimental developments. Here an updated and experimentally based baseline model for electrical simulations in the Solar Cell Capacitor Simulator (SCAPS) software is presented and discussed with the incorporation of the PDT effects and increased optical accuracy with the support from Finite-Difference Time-Domain (FDTD) simulation results. Furthermore, a champion solar cell with an equivalent architecture validates the developed thin-film model. The baseline model is also applied to ultrathin CIGS solar cell devices, validated with the ultrathin champion cell. Ultimately, these ultrathin models pave the way for an ultrathin baseline model. Simulations results reveal that addressing these absorbers' inherent limitations makes it possible to achieve an ultrathin solar cell with at least 21.0% power conversion efficiency, with open-circuit voltage values even higher than the recent thin-film champion cells.This work was supported by the Fundação para a Ciência e Tecno-logia (FCT) grant numbers DFA/BD/7073/2020, DFA/BD/4564/2020, SFRH/BD/146776/2019, IF/00133/2015, UIDB/50025/2020, UIDP/50025/2020, UIDB/04730/2020, and UIDP/04730/2020. The authors want to acknowledge the funding from the project NovaCell (PTDC/ CTM-CTM/28075/2017). The authors also acknowledge the financial support of the project Baterias 2030, with the reference POCI-01-0247-FEDER-046109, co-funded by Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDFinfo:eu-repo/semantics/submittedVersio

    Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis

    Get PDF
    The most effective medicines available for the treatment of leishmaniasis, a life-threatening disease, exhibit serious toxicological issues. To achieve better therapeutic efficiency while decreasing toxicity associated with amphotericin B (AmB), water-soluble dextrin-AmB (Dex-AmB) formulations were developed. Self-assembled nanocomplexes were formed by dissolving Dex and AmB in alkaline borate buffer, followed by dialysis and either freeze-drying (FD) or nano spray-drying (SD), yielding water dispersible particles with a diameter of 214nm and 347nm, respectively. The very simple production process allowed the formation of amorphous inclusion complexes containing 14% of AmB in the form of monomers and water-soluble aggregates. Nanocomplexes were effective against parasites in axenic culture (IC50 of 0.056 and 0.096M for L. amazonensis and 0.030 and 0.044M for L. infantum, respectively for Dex-AmB FD and Dex-AmB SD) and in decreasing the intramacrophagic infection with L. infantum (IC50 of 0.017 and 0.023M, respectively for Dex-AmB FD and Dex-AmB SD). Also, the formulations were able to significantly reduce the cytotoxicity of AmB. Overall, this study demonstrates the suitability of dextrin as an AmB carrier and the facile and inexpensive development of a delivery system for the treatment of leishmaniasis.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2019 and BioTecNorte operation (NORTE-01-0145-FEDER000004 - Underpinning Biotechnology to foster the north of Portugal bioeconomy and NORTE-01-0145-FEDER-000012 - Structured program on bioengineered therapies for Infectious diseases and tissue regeneration) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Ricardo Silva-Carvalho gratefully acknowledge FCT for the granted scholarship (SFRH/BD/118880/2016). Karoline Rachel Melo and Moacir Fernandes Queiroz gratefully acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil for the granted scholarship.info:eu-repo/semantics/publishedVersio

    Studies in the mouse model identify strain variability as a major determinant of disease outcome in Leishmania infantum infection

    Get PDF
    Visceral leishmaniasis is a severe and potentially fatal disease caused by protozoa of the genus Leishmania, transmitted by phlebotomine sandflies. In Europe and the Mediterranean region, L. infantum is the commonest agent of visceral leishmaniasis, causing a wide spectrum of clinical manifestations, including asymptomatic carriage, cutaneous lesions and severe visceral disease. Visceral leishmaniasis is more frequent in immunocompromised individuals and data obtained in experimental models of infection have highlighted the importance of the host immune response, namely the efficient activation of host's macrophages, in determining infection outcome. Conversely, few studies have addressed a possible contribution of parasite variability to this outcome.No funders or funding refered in the paper

    Optical lithography patterning of SiO2 layers for interface passivation of thin film solar cells

    Get PDF
    Ultrathin Cu(In,Ga)Se2 solar cells are a promising way to reduce costs and to increase the electrical performance of thin film solar cells. In this work, we develop an optical lithography process that can produce sub-micrometer contacts in a SiO2 passivation layer at the CIGS rear contact. Furthermore, an optimization of the patterning dimensions reveals constrains over the features sizes. High passivation areas of the rear contact are needed to passivate the CIGS interface so that high performing solar cells can be obtained. However, these dimensions should not be achieved by using long distances between the contacts as they lead to poor electrical performance due to poor carrier extraction. This study expands the choice of passivation materials already known for ultrathin solar cells and its fabrication techniques.publishe

    Optoelectronic simulations for novel light management concepts in Cu(In,Ga)Se2 solar cells

    Get PDF
    One of the trends making its way through the Photovoltaics (PV) industry, is the search for new application possibilities. Cu(In,Ga)Se2 (CIGS) thin film solar cells stand out due to their class leading power conversion efficiency of 23.35 %, flexibility, and low cost. The use of sub-μm ultrathin CIGS solar cells has been gaining prevalence, due to the reduction in material consumption and the manufacturing time. Precise CIGS finite-difference time-domain (FDTD) and 3D-drift diffusion baseline models were developed for the Lumerical suite and a 1D electrical model for SCAPS, allowing for an accurate description of the optoelectronic behavior and response of thin and ultrathin CIGS solar cells. As a result, it was possible to obtain accurate descriptions of the optoelectronic behavior of thin and ultrathin solar cells, and to perform an optical study and optimization of novel light management approaches, such as, random texturization, photonic nanostructures, plasmonic nanoparticles, among others. The developed light management architectures enabled to push the optical performance of an ultrathin solar cell and even surpass the performance of a thin film solar cell, enabling a short-circuit current enhancement of 6.15 mA/cm2 over an ultrathin reference device, without any light management integrated.publishe
    • …
    corecore