5 research outputs found

    Decoupled supercapacitive electrolyzer for membrane-free water splitting

    Get PDF
    Green hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm–by–5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.E.A.T.-C. would like to thank the National Research and Development Agency of Chile (ANID) for the doctoral scholarship “Beca Chile” 2018-72190682. M.G.-R. and L.M.S.-M. would like to thank Campus Iberus for Erasmus+ KA103 scholarship and Facultad de Ciencias of University of Alicante for the internship scholarship. J.D. would like to acknowledge partial financing from Vinnova (diary no. 2021-02313) and Åforsk (ref. no. 21-105)

    Bifunctional and regenerable molecular electrode for water electrolysis at neutral pH

    No full text
    The instability of molecular electrodes under oxidative/reductive conditions and insufficient understanding of the metal oxide-based systems have slowed down the progress of H-2-based fuels. Efficient regeneration of the electrode's performance after prolonged use is another bottleneck of this research. This work represents the first example of a bifunctional and electrochemically regenerable molecular electrode which can be used for the unperturbed production of H-2 from water. Pyridyl linkers with flexible arms (-CH2-CH2-) on modified fluorine-doped carbon cloth (FCC) were used to anchor a highly active ruthenium electrocatalyst [Ru-II(mcbp)(H2O)(2)] (1) [mcbp(2-) = 2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine]. The pyridine unit of the linker replaces one of the water molecules of 1, which resulted in RuPFCC (ruthenium electrocatalyst anchored on -CH2-CH2-pyridine modified FCC), a high-performing electrode for oxygen evolution reaction [OER, overpotential of similar to 215 mV] as well as hydrogen evolution reaction (HER, overpotential of similar to 330 mV) at pH 7. A current density of similar to 8 mA cm(-2) at 2.06 V (vs. RHE) and similar to-6 mA cm(-2) at -0.84 V (vs. RHE) with only 0.04 wt% loading of ruthenium was obtained. OER turnover of >7.4 x 10(3) at 1.81 V in 48 h and HER turnover of >3.6 x 10(3) at -0.79 V in 3 h were calculated. The activity of the OER anode after 48 h use could be electrochemically regenerated to similar to 98% of its original activity while it serves as a HE cathode (evolving hydrogen) for 8 h. This electrode design can also be used for developing ultra-stable molecular electrodes with exciting electrochemical regeneration features, for other proton-dependent electrochemical processes

    Sociology of Work at the Crossroad

    No full text

    Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study

    Get PDF
    Objectives Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis. Setting Prospective, international, multicentre, observational cohort study. Participants Patients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative). Primary outcome 30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality. Results This study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787). Conclusions Patients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups. Trial registration number NCT0432364

    Make EU trade with Brazil sustainable

    Get PDF
    Brazil, home to one of the planet's last great forests, is currently in trade negotiations with its second largest trading partner, the European Union (EU). We urge the EU to seize this critical opportunity to ensure that Brazil protects human rights and the environment
    corecore