942 research outputs found

    Practical Camera Sensor Spectral Response and Uncertainty Estimation

    Get PDF
    Knowledge of the spectral response of a camera is important in many applications such as illumination estimation, spectrum estimation in multi-spectral camera systems, and color consistency correction for computer vision. We present a practical method for estimating the camera sensor spectral response and uncertainty, consisting of an imaging method and an algorithm. We use only 15 images (four diffraction images and 11 images of color patches of known spectra to obtain high-resolution spectral response estimates) and obtain uncertainty estimates by training an ensemble of response estimation models. The algorithm does not assume any strict priors that would limit the possible spectral response estimates and is thus applicable to any camera sensor, at least in the visible range. The estimates have low errors for estimating color channel values from known spectra, and are consistent with previously reported spectral response estimates.Peer reviewe

    Snapshot hyperspectral imaging using wide dilation networks

    Get PDF
    Hyperspectral (HS) cameras record the spectrum at multiple wavelengths for each pixel in an image, and are used, e.g., for quality control and agricultural remote sensing. We introduce a fast, cost-efficient and mobile method of taking HS images using a regular digital camera equipped with a passive diffraction grating filter, using machine learning for constructing the HS image. The grating distorts the image by effectively mapping the spectral information into spatial dislocations, which we convert into a HS image by a convolutional neural network utilizing novel wide dilation convolutions that accurately model optical properties of diffraction. We demonstrate high-quality HS reconstruction using a model trained on only 271 pairs of diffraction grating and ground truth HS images.Peer reviewe

    Synergies and trade-offs between renewable energy extraction and biodiversity conservation - a cross-national multi-factor analysis

    Get PDF
    Increased deployment of renewable energy can contribute towards mitigating climate change and improving air quality, wealth and development. However, renewable energy technologies are not free of environmental impacts; thus, it is important to identify opportunities and potential threats from the expansion of renewable energy deployment. Currently, there is no cross-national comprehensive analysis linking renewable energy potential simultaneously to socio-economic and political factors and biodiversity priority locations. Here, we quantify the relationship between the fraction of land-based renewable energy (including solar photovoltaic, wind and bioenergy) potential available outside the top biodiversity areas (i.e. outside the highest ranked 30% priority areas for biodiversity conservation) within each country, with selected socio-economic and geopolitical factors as well as biodiversity assets. We do so for two scenarios that identify priority areas for biodiversity conservation alternatively in a globally coordinated manner vs. separately for individual countries. We show that very different opportunities and challenges emerge if the priority areas for biodiversity protection are identified globally or designated nationally. In the former scenario, potential for solar, wind and bioenergy outside the top biodiversity areas is highest in developing countries, in sparsely populated countries and in countries of low biodiversity potential but with high air pollution mortality. Conversely, when priority areas for biodiversity protection are designated nationally, renewable energy potential outside the top biodiversity areas is highest in countries with good governance but also in countries with high biodiversity potential and population density. Overall, these results identify both clear opportunities but also risks that should be considered carefully when making decisions about renewable energy policies

    Robotic equipment carrying RN detectors: requirements and capabilities for testing

    Get PDF
    77 pags., 32 figs., 5 tabs.-- ERNCIP Radiological and Nuclear Threats to Critical Infrastructure Thematic Group . -- This publication is a Technical report by the Joint Research Centre (JRC) . -- JRC128728 . -- EUR 31044 ENThe research leading to these results has received funding from the European Union as part of the European Reference Network for Critical Infrastructure Protection (ERNCIP) projec

    Identifying global centers of unsustainable commercial harvesting of species

    Get PDF
    Overexploitation is one of the main threats to biodiversity, but the intensity of this threat varies geographically. We identified global concentrations, on land and at sea, of 4543 species threatened by unsustainable commercial harvesting. Regions under high-intensity threat (based on accessibility on land and on fishing catch at sea) cover 4.3% of the land and 6.1% of the seas and contain 82% of all species threatened by unsustainable harvesting and > 80% of the ranges of Critically Endangered species threatened by unsustainable harvesting. Currently, only 16% of these regions are covered by protected areas on land and just 6% at sea. Urgent actions are needed in these centers of unsustainable harvesting to ensure that use of species is sustainable and to prevent further species' extinctions.Peer reviewe

    On 3D dynamic control of secondary cooling in continuous casting process

    Get PDF
    In this paper a 3D-model for simulation and dynamic control of the continuous casting process is presented. The diffusion convection equation with multiphase transition is used as a simulation model. The developed model is discretized by finite element method and the algebraic equations are solved using pointwise relaxation method. Two different type of methods are used to control the secondary cooling, namely PID and optimal control method. The numerical results are presented and analyzed

    Laboratory-based surveillance of COVID-19 in the Greater Helsinki area, Finland, February-June 2020

    Get PDF
    Objectives: The aim was to characterise age-and sex-specific severe acute respiratory syndrome coronavirus disease-2 (SARS-CoV-2) RT-PCR sampling frequency and positivity rate in Greater Helsinki area in Finland during February & ndash;June 2020. We also describe the laboratory capacity building for these diagnostics. Methods: Laboratory registry data for altogether 80,791 specimens from 70,517 individuals was analysed. The data included the date of sampling, sex, age and the SARS-CoV-2 RT-PCR test result on specimens collected between 1 February and 15 June 2020. Results: Altogether, 4057/80,791 (5.0%) of the specimens were positive and 3915/70,517 (5.6%) of the individuals were found positive. In all, 37% of specimens were from male and 67% from female subjects. While the number of positive cases was similar in male and female subjects, the positivity rate was significantly higher in male subjects: 7.5% of male and 4.4% of female subjects tested positive. The highest incidence/100,000 was observed in those aged >80 years. The proportion of young adults in positive cases increased in late May 2020. Large dips in testing frequency were observed during every weekend and also during public holidays. Conclusions: Our data suggest that men pursue SARS-CoV-2 testing less frequently than women. Consequently, a subset of coronavirus disease-2019 infections in men may have gone undetected. People sought testing less frequently on weekends and public holidays, and this may also lead to missing of positive cases. The proportion of young adults in positive cases increased towards the end of the study period, which may suggest their returning back to social behaviour with an increased risk of infection. (c) 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ncnd/4.0/).Peer reviewe
    corecore