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Abstract
Hyperspectral (HS) cameras record the spectrum at multiple wavelengths for each pixel in an image, and are used, e.g., for
quality control and agricultural remote sensing. We introduce a fast, cost-efficient and mobile method of taking HS images
using a regular digital camera equipped with a passive diffraction grating filter, using machine learning for constructing the
HS image. The grating distorts the image by effectively mapping the spectral information into spatial dislocations, which we
convert into a HS image by a convolutional neural network utilizing novel wide dilation convolutions that accurately model
optical properties of diffraction. We demonstrate high-quality HS reconstruction using a model trained on only 271 pairs of
diffraction grating and ground truth HS images.

Keywords Hyperspectral imaging · Deep learning · Convolutional neural networks

1 Introduction

In hyperspectral imaging, onewishes to capture an image that
provides for each pixel the spectrum at a continuous range
of wavelengths [1,2]. Since many materials have a unique
spectral signature, one can use HS images to, for example,
segment images according to materials [3]. This makes HS
images useful in wide range of tasks in science and industry,
such as satellite surveying [4,5], food quality assurance [6],
gas and oil exploration [7], and various medical applications
[8].

Special devices called hyperspectral cameras are used to
take HS images. These devices generally operate by scan-
ning the scene either spatially (spatial scanning) or spectrally
(spectral scanning) [9], and capture tens to hundreds of
spectral channels to preserve the shape of the spectrum, as
opposed to multispectral cameras that record fewer, possibly
disjoint, spectral channels [3]. Capturing a single image in
good lighting conditions might take tens of seconds using a
scanningmethod, since the camera needs to capture each spa-
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tial or spectral dimension separately. Furthermore, the spatial
resolution at which these cameras operate is typically low—
for example, the Specim IQ, a portable HS camera, yields
images of size 512 × 512 [2], and more refined stationary
models yield images of 1–2MP. These specialized devices
are also expensive, currently costing in the order of tens of
thousands of euros or US dollars.

In contrast to the scanning approach, snapshot imaging
techniques capture the entire hyperspectral cube at once.
They are based, for example, on prism and beam-splitter
constructs [10], per-pixel filters at the image sensor [11], or
tunable narrow-band optical filters [12]. These methods have
the advantage of short capture time, but still require costly
specialized hardware. Recently it was demonstrated that even
capturing HS video at high frame-rate is possible [13], by
combining high-speedRGBvideowith specializedHS imag-
ing hardware operating on lower temporal frequency.

To combine low cost with fast image acquisition, we need
snapshot imaging without active mechanical elements. This
can be done by using a diffraction grating filter [14–16], a
prism [17], or an optical diffuser [18], followed by algo-
rithmic reconstruction of the HS image. The existing work
in this direction, however, has serious limitations. The early
works using a diffraction grating employ linear reconstruc-
tion models that can only produce images of extremely low
resolution [14,15], whereas the more recent work using a
prism requires time-consuming post-processing for creating
the HS image (Baek et al. [17] report 45min for creating a
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Fig. 1 (Top left) The custom diffraction grating mounted in front of a
DSLR camera. (Base figure) setup for acquisition of the training image
pairs. The hyperspectral camera and digital camera are placed side by
side on a horizontal slide with stoppers, allowing for both cameras to
capture the scene from the same location. The lighting was composed
of two white led light sources and a halogen light for a more complete
spectral illumination. The purpose of the frame is to stop excessive stray
light from the background interfering with the diffraction

512 × 512 image), largely defeating the advantage of rapid
image acquisition.

We present a method of capturing hyperspectral images
by combining low-cost passive filter with deep learning. We
attach a diffraction grating filter to a standard digital camera
(Fig. 1, top left), in order to distribute the spectral informa-
tion in the scene into the spatial dimensions in a specific—but
difficult to model—manner. We then propose a novel con-
volutional neural network (CNN) [19] variant for inverting
the diffraction and reconstructing the spectral information,
essentially assigning the spatial diffraction patterns back into
the spectral dimension. The technique combines fast image
acquisition with a HS image construction algorithm that runs
in under a second.

Our model is based on CNNs used for similar image-to-
image visual tasks, such as single-image super resolution
(SISR) [20]. The core novelty is the use of multiple concur-
rent convolutional layerswith very large dilation rates, which
allows maintaining a large spatial range with a small number
of parameters. We show that such filters accurately model
the underlying phenomena of diffraction, and present a way
of automatically detecting the dilation rate hyperparameters
based on captured image data, removing the need for a sep-
arate calibration process. The wide dilated convolutions are
coupled with two other elements critical for construction of
high-quality HS images: (a) residual blocks, as used in the
ResNet architecture [21], for correcting for nonlinear effects
not adequately modeled by the convolution layer, and (b)
loss function that balances between reconstruction of the spa-
tial structure in the image and reconstruction of the spectral
characteristics of individual pixels. Furthermore, the model

architecture is designed such that we can control the output
resolution by adapting the dilation rate of the convolutions.
This allows producing HS images of higher resolution than
what is available for training the model.

By taking into account the physical properties of diffrac-
tion in the network architecture,we are able to train ourmodel
with a relatively small dataset. For training and evaluation of
the model, we used pairs of hyperspectral images taken with
the Specim IQ HS camera [2], and diffraction images taken
with a standard digital camera and a diffraction grating filter.
For this purpose, we collected a set of 271 image pairs in
controlled conditions; see Fig. 1 for illustration and Sect. 4.1
for details on the experimental setup. We show the effective-
ness of our technique both qualitatively, in terms of visual
inspection of the of output, and quantitatively, in terms of
error w.r.t. ground truth images of image pairs not used for
training the model. We demonstrate high overall quality of
resulting HS images and hence provide a proof-of-concept
for low-cost and time-efficient high-resolution hyperspectral
imaging.

2 Background: hyperspectral imaging

2.1 Dispersion and diffraction

Hyperspectral imaging is traditionally performed using a
light dispersive element, such as a diffraction grating or a
prism, and some scanning method [1]. The purpose of the
dispersive element is to direct different wavelengths of light
toward different locations in a sensor. Prisms achieve this by
refraction of light and diffraction grating filters by diffrac-
tion. In both cases, the angle of dispersion—and hence the
location of a light beam on the imaging sensor—depends on
the wavelength of the light and physical characteristics of the
dispersion element. For prisms, the dispersion is controlled
by the shape and index of refraction, and for diffraction grat-
ings by the spacing of the grating, the grating constant.

We use a diffraction grating element that consists of an
array of equally spaced horizontal and vertical slits gener-
ating a grid of apertures, each of which causes diffraction.
This diffraction grating causes constructive interference to
be maximized at the direction of incident light, which is
called the zeroth-order diffraction component. More diffrac-
tion components that are integer multiples of the angle of
diffraction are also formed, denoted by their-order number,
e.g., the first-order diffraction component. The intensities of
the diffraction components are inversely proportional to their
order number, the zeroth-order component having the highest
intensity, and the following ones having diminishing inten-
sity. We are mainly concerned with the zeroth and first-order
diffraction components, because higher-order components
have a much lower relative intensity.
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An important observation is that the diffraction grating
disperses the spectrum of each spatial area in the scene into
the surrounding areas on the sensor, which may be on top of
other objects in the scene. While it is in principle possible
to model which part of the spectrum gets diffracted where
(and apply a deconvolution to reverse it), lens curvature and
the specific camera used cause additional nonlinearities. In
Sect. 5, we empirically demonstrate that modeling these non-
linearities clearly improves the accuracy.

2.2 Standard hyperspectral imaging

Traditional HSI techniques capture the hyperspectral images
by scanning each spectral or spatial dimension at a time. This
process can involve using a mechanical device to shift a nar-
row aperture or a slit, like in the Specim IQ camera used in
our experiments [2]. Spectral scanning can alternatively be
performed using a Fabry–Perot interferometer as a tunable,
narrow band bandpass filter [12], which performs optical fil-
tering as opposed to dispersing spectral components of light.
The final hyperspectral image is then formed by processing
either the spectral or spatial slices.

Snapshot imaging [22] enables taking thewholeHS image
at once, which offers a significant advantage in terms of
imaging speed. However, existing solutions are expensive
and based on complex hardware [10,11].

2.3 Passive hyperspectral imaging

Our primary goal is to avoid use of expensive active elements,
and hence the most closely related work is on combination
of passive dispersive or diffractive elements combined with
algorithmic reconstruction of the HS image.

The idea of re-constructing HS images from images
taken through a diffraction grating filter was presented first
by Okamoto and Yamaguchi [14]. They proposed a mul-
tiplicative algebraic reconstruction technique (MART) for
generating the HS images, and Descour and Dereniak [15]
provided an alternative reconstruction algorithm based on
computed tomography. More recently, computed tomogra-
phy was used for retinal hyperspectral imaging based on
custom camera and diffraction grating filter [16].While these
early works demonstrated the feasibility of snapshot HS
imaging with passive filters, their experiments were limited
to images of 11 × 11 [15] and 72 × 72 pixels [14]. Modern
computing hardware would help increasing the resolution,
but the reconstruction algorithms would not scale to resolu-
tions in the order of megapixels because they are based on
storing and processing the whole system matrix of number
of diffraction image elements times the number of hyper-
spectral image elements. For example, for reconstructing a
256×256×100 HS image based on 1MP diffraction image,
the system matrix would consume approximately 20TB of

memory. Furthermore, the reconstruction algorithms are not
robust for real-world data due to a strong linearity assumption
that does not hold for most imaging setups or devices.

Another snapshot-based HS imaging method is based on
combining a digital camera with an optical diffuser [18],
more specifically a restricted isometry property (RIP) dif-
fuser. The RIP diffuser diffuses the light onto the sensor,
and a custom algorithm, relying on the RIP condition of
the diffuser and sparsity of the reconstruction solution in
some wavelet-frame domain, performs the reconstruction of
the hyperspectral cube using a linear interactive split Breg-
man method [23]. The imaging and reconstruction method is
shown to produce hyperspectral cubes of 256 × 256 for 33
narrow wavelength bands in the range of 400nm to 720nm.
A method for diffraction-grating based hyperspectral imag-
ing is also given by Habel et al. [24]. They use an additional
lens construct together with a diffraction grating attached to a
standard digital camera and present a method based on com-
puted tomography imaging spectrometry involving spectral
demosaicing and reconstruction. They are able to produce
HS images of 124× 124 pixels and 54 spectral channels, but
the approach requires extensive camera-specific calibration.

In addition to diffraction gratings, prisms can be used as
the dispersive element. Baek et al. [17] attached a prism to
a DSLR lens and reconstructed HS images based on spatial
dispersion of spectra over the edges in the captured image
and subsequent detection of spectral edge blur. Their solu-
tion is conceptually similar to ours: both use passive add-on
device and spectral reconstruction is performed computa-
tionally. However, prisms are considerably larger and heavier
than diffraction grating filters, and their method of spectral
reconstruction is computationally very expensive, consum-
ing a total of 45min for a single 512× 512 pixel image on a
desktop computer.

Our solution is qualitatively different from the earlier
works of [14,15], producing HS images with 2–3 orders of
magnitude higher spatial resolution (in each direction). The
RIP diffuser method [18] suffers from high degree of blur,
failing to produce sharp images even at medium resolutions.
On the other hand, the newer work of Baek et al. [17] pro-
duces comparable spatial resolution, but is computationally
much more expensive, relies on an alternative dispersion ele-
ment, and requires presence of strong edges in the image due
to the properties of the reconstruction algorithm. Similarly,
the method of Habel et al. [24] achieves spatial and spec-
tral resolutions comparable to our method, but requires more
complex optical device and camera-specific calibration. Fur-
thermore, the field-of-view of their method is also limited
because of the relatively small square aperture used as a field
stop.
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3 Methods

3.1 CNNs for diffraction-based HS imaging

In this section, we describe theWideDilation Networkmodel
for constructing hyperspectral images. The model takes as
input a RGB image Id ∈ R

w×h×3 taken with a diffraction
grating filter attached to the camera, and produces a tensor
Ihs ∈ R

w′×h′×Nλ , providing spectral information for each
pixel. In our experiments (detailed in Sect. 4.1), we use input
images of size 526×526with three color channels and output
HS images of size 384×384 with 102 spectral channels, but
the approach is generally applicable for all resolutions and is
limited only by the resolution of the ground truth HS images
available for training the model.

The model, illustrated in Fig. 2, is an instance of convolu-
tional neural networks. It builds on the ResNet architecture
[21], but replaces standard convolutions in the first layer with
a novel dilated convolution scheme designed specifically to
account for the characteristic properties of light diffraction.
In the following, we will first explain the convolution design

Fig. 2 Wide dilation network for HS image reconstruction. We employ
dilated convolutions of different sizes alongwithmultiple stacked resid-
ual blocks that each contains 2D convolutions and batch normalization,
followed by 1 × 1 convolution for final reconstruction of the spectrum
for each pixel. Themodel takes as input the diffraction image (w×h×3
tensor), and outputs a hyperspectral image: a (w′ × h′ × 102) tensor,
shown here as a RGB summary created using the CMF of Fig. 5. In our
experiments, w = h = 526 and w′ = h′ = 384

and then proceed to provide a loss function optimized for
re-construction of HS images. Finally, we discuss technical
decisions related to the dilated convolutions and explain how
simple upscaling of the dilation rates can be used for increas-
ing the result of the output image.

3.2 Convolution design

Figure 3 (left) shows an image of a narrow-band laser pro-
jected at a dark background, taken through a diffraction
grating filter. The laser is projected at a single point, but the
first-order diffraction pattern of the grating filter disperses
it to eight other positions as well, one in each major direc-
tion. The specific locations depend on the wavelength of the
light, and for a narrow band laser are clearly localized. The
first layer of our CNN is motivated by this observation. To
capture the diffraction pattern, we need a convolutional filter
that covers the entire range of possible diffraction distances
yet retains sparsity to map the specific spatial dispersions to
the right spectral wavelengths. This can be achieved with a
set of dilated convolutions [25,26] with exceptionally wide
dilation rate: this allows representing long-range dependen-
cies with few parameters. More specifically, we use simple
3 × 3 kernels, with dilation rate d yielding an effective con-
volution window of 2d + 1 in both directions with just 9
parameters per kernel. With 3×3 kernels we can capture the
zeroth and first-order diffraction components, assuming d is
selected suitably. The required d depends on the wavelength,
and to cover all wavelengths within a specific range we need
to introduce convolutions with varying d ∈ [Dmin, Dmax].
For each d in this range, we learn 5 filters, resulting in total
5 (Dmax − Dmin + 1) filters. The required range of dilation

Fig. 3 (Left)Dilated convolutionoverlaid over a photographof a single-
point narrow-band (532±10nm) laser on a dark surface taken through a
diffraction grating in a darkened room. Already a 3×3 convolution with
dilation rate of 100 captures the first-order diffraction pattern. Due to
the high intensity of the laser, we see also the second-order diffractions,
which are typically not visible in real images. (Right) averaged, center
shifted cepstrum for a random sample of 40 diffraction photographs,
cropped to center where the diffraction pattern is evident. The range of
dilation rates required for modeling the diffraction is revealed by the
vertical (or horizontal) distance in pixels from the center to the first
(Dmin, blue) and last (Dmax, red) maxima (color figure online)
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rates can be determined based on the acquired diffraction
images directly, with a process described in Sect. 3.4; for our
setup we end up using 60 values for d and hence 300 filters
in total.

Even though the convolutional layer can model the basic
properties of diffraction using the wide dilations, the result-
ing linear combination is not sufficient for constructing the
HS image due to nonlinearities of the imaging setup. We
correct for this by forwarding the output to four consecu-
tive layers that combine standard 2D convolutional layers
with batch normalization and an additive residual connec-
tion, modeled after the residual blocks used for single-image
super-resolution byLedig et al. [20]. Each residual block con-
sists of a sequence of 2D convolution, batch normalization,
the Swish [27] activation function y

1+e−y , 2D convolution,
batch normalization, and a skip (identity) connection. The
choice can be partially explained by the similarity of the two
tasks: super-resolution techniques produce spatially higher
resolution images, whereas we expand the spectral resolu-
tion of the imagewhile keeping the spatial resolution roughly
constant. For both cases, the residual connections help in
retaining high visual quality. The final 1 × 1 convolution at
the end of the network collapses the 300 channels into the
desired number of spectral channels, here 102.

3.3 Loss function

To properly optimize for the quality of the reconstructed
hyperspectral images, we construct a specific loss function
by mixing a metric for RGB images with one for spectral
distance. For high-quality HS images, we require that:

(a) The spectrum for each pixel of the output should match
the ground-truth as closely as possible.

(b) Each spectral slice of the output should match the ground
truth as a monochrome image.

The criterion (a) is critical for many applications of HS
imaging that rely on the distinct spectral signatures of dif-
ferent materials [28]. Following the comprehensive study of
spectral quality assessment [29], we employ the Canberra
distance measure between the spectra of each pixel. Denote
by ŷ and y the reconstructed and ground truth spectra for one
pixel, and by λ a channel corresponding to a narrow wave-
length band of the spectrum. The Canberra distance between
the two spectra is then given by

dCan(ŷ, y) =
∑

λ

|ŷλ − yλ|
ŷλ + yλ

, (1)

which should be small for all pixels of the image.
To address criterion (b), we employ the structural sim-

ilarity measure SSIM [30], frequently used for evaluating

similarity of RGB or monochrome images. To compute
the similarity between the reconstructed and ground truth
images, we slide a Gaussian window of size 11×11 through
both images, and for each window compute the quantity

Sŵ,w = (2E[ŵ]E[w] + c1)(2Cov[ŵ,w] + c2)

(E[ŵ]2 + E[w]2 + c1)(Var[ŵ] + Var[w] + c2)
,

where ŵ and w are windows of the two images, c1, c2 are
constants added for numerical stability, and E[·], Var[·], and
Cov[·] denote expectation (mean), variance and covariance,
respectively. This quantity is computed for each spectral
channel separately, and averaged to produce the SSIM index

SSIM(ŷ, y) = 1

NŷNy

∑

ŵ∈ŷ

∑

w∈y
Sŵ,w.

Here the sums loop over all the windows ŵ ∈ ŷ and w ∈ y
and where Nŷ and Ny are the number of windows in ŷ and
y, respectively.

Our final loss (to be minimized) simply combines the two
terms by subtracting the SSIM index from the Canberra dis-
tance:

L(ŷ, y) =
∑

h

∑

w

dCan(ŷ, y) − SSIM(ŷ, y). (2)

While we could here add a scaling factor to balance the two
terms, our empirical experiments indicated that the method
is not sensitive to the relative weight and hence for simplicity
we use unit weights.

The model is trained using straightforward stochastic
gradient descent with Adamax [31] as the optimization algo-
rithm, using a single Nvidia Tesla P100 GPU. The model
training consumed approximately 10h.

3.4 Selection of dilation rates

The dilation range [Dmin, Dmax] of the filters needs to be
specified based on the range of the diffraction. This range
depends on the imaging setup—mainly on the camera, lens,
chosen resolution, and on the specific diffraction grating
used. Importantly, however, it does not depend on the dis-
tance from the image target, or other properties of the scene.
The dilation range needs to be wide enough to cover the first-
order diffraction pattern, but not too wide as not to introduce
excess parameters.

The range can be determined based on a diffraction pho-
tograph of a broadband but spatially narrow light source. A
suitable lamp, ideally an incandescent filament lamp, placed
behind a small openingwould reveal the extent of diffraction.
The range would then be determined by the pixel differences
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between the light source and first and last diffraction com-
ponents of the first-order diffraction pattern.

Alternatively, we could estimate the range by using two
lasers corresponding to extreme wavelengths pointed at the
camera.

It turns out, however, that the dilation range can also
be determined without a separate calibration step, which
makes the approach less sensitive to the imaging setup. We
use the log magnitude of the cepstrum log(|C(I )|), where
C(I ) = F−1

2D (log(|F2D(I )|)) and F is the Fourier transform,
to extract periodic components from the frequency domain.
To reduce the noise and for easy visual identification of the
dilation range, we average the log magnitude of the cepstrum
over multiple photographs.

Figure 3 (right) shows the averaged cepstrum for randomly
selected 40 diffraction photographs, revealing the diffraction
range that corresponds to the dilation rate range required for
modeling the diffraction pattern.

To see why this works, we can think of diffraction pho-
tographs to have been formed by shifted and attenuated
copies of infinitesimally narrow wavelength bands of the
scene summed onto the scene. For the first-order diffrac-
tion components, a shifted copy is summed in a total of
eight major directions for each narrowwavelength band. The
amount of shift is a function ofwavelength and assumed to be
linearly proportional to thewavelength. The visible spectrum
of light forms a continuum for which we wish to discover the
range of the shifted and attenuated copies of the scene. To
find this range, wemake use of the “duplicate function” prop-
erty of the cepstrum, explained in [32]. The shifted copies,
duplicates of narrow wavelength bands of the original scene,
will be visible in the cepstral domain as impulses, located
at the shifting vector relative to the center as seen in Fig. 3
(right).

The computational cost of estimating the dilation rate
range from the cepstrum is low, and in practice we only need
a few images to see a clear range. This can be carried out on
the same images that are used for training the model.

3.5 Dilation upscaling

Our method allows us to perform hyperspectral reconstruc-
tion on higher-resolution images than the ones themodel was
trained on. We achieve this by feeding in diffraction images
at higher resolution (anyway available because the diffrac-
tion images are acquired with high-resolution DSLR) and
increasing the dilation rates of the first layer by a constant
scale factor s ∈ N, so that for every dilation rate dn we use
the rate sdn . This provides HS images s times larger spatially
than the ones the model was trained on, without additional
training. See Fig. 7 for a visual evaluation of the procedure.

4 Materials and evaluation

4.1 Data collection

For training and evaluating the model, we collected pairs of
(a) hyperspectral images, in the spectral range of 400–1000
nm, and (b)RGB images capturedwith the diffraction grating
element. The HS images were captured using a Specim IQ
mobile hyperspectral camera, which captures 512×512 pixel
images with 204 spectral bands. The integration time, the
time to capture a single vertical column of pixels, for each
HS imagewas 35ms, resulting in total image acquisition time
of 18s (followed by tens of seconds of image storage and
postprocessing). The last 102 spectral bands (corresponding
to the 700–1000nm range) of the HS images were discarded
as these are in the near infrared range that our digital RGB
camera filters out.

The imaging setup consists of a slide where the cameras
are mounted (Fig. 1). The slide enables alternating the loca-
tion of the HS camera and the camera for diffraction imaging
so that images are captured from the same location. The RGB
imageswere captured using aCanon 6DDSLRwith a 35-mm
normal lens together with a custom made diffraction grating
filter mounted in front of the lens.

We used a transmitting double axis diffraction grating.
Photographswere captured at a resolution of 5472×3648, but
were cropped to 3000×3000 because the diffraction grating
mount has a square aperture which causes vignetting. Each
photograph was captured with an exposure time of 1/30 s,
aperture value of 9.0 f and 500 ISO speed setting. The aper-
ture value was selected to reduce the blurring effect caused
by the vignetting of the window in the diffraction grating.

The hyperspectral images and the diffraction photographs
were preprocessed by cropping and aligning. The hyper-
spectral images were center cropped to remove some of the
unwantedbackground.Thediffractionphotographswerefirst
downsampled to match the hyperspectral images’ scale and
then slightly rotated (with common rotation angle for every
photograph) to account for slight bending of the camera
assembly, caused by the weight of the cameras in the oppo-
site ends of the camera assembly. The bending is estimated to
have caused a shift and rotation about the imaging axis of at
most 5mm and 2◦, respectively. Finally, the diffraction pho-
tographs were cropped to 526 × 526 for training, matching
the scene with the HSI.

Finally, pairs of hyperspectral images and photographs
were translated with respect to each other using template
matching [33], where RGB reconstructions of the hyper-
spectral images were used as the templates. Compensation
for distortion by means of transforming image pairs using
camera extrinsic calibration was not necessary, because only
center parts of images were used resulting in mostly distor-
tion free images. We collected 271 pairs of diffraction and
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hyperspectral images, of which 32were used only for evalua-
tion. The images were taken indoors under multiple artificial
light sources. The subject of the images is a collection of
toys, different colored blocks, books, leaves, and other small
items against a dark background. The objects were placed
mainly in the lower center area of the images.

4.2 Model variants

Our model employs three separate elements that are required
for constructing high-qualityHS images: (a) thewide dilation
layer in the beginning of the network, (b) the residual blocks
formodeling nonlinearities, and (c) the loss function ensuring
good spatial and spectral characteristics.

To verify the importance of the residual blocks for cor-
recting nonlinearities in the imaging setup, we compare the
proposed model against one without the residual blocks,
directly connecting the convolutional layers to the output. For
the full model, the number of residual blocks was selected
between 1 and 8 using standard cross-validation, resulting in
the final choice of four blocks. Similarly, to demonstrate the
importance of modeling both the spatial reconstruction qual-
ity using SSIM and the spectral reconstruction quality using
Canberra distance in the combined loss Eq. (2), we compare
against the proposed model optimized for each term alone.

Finally, we could also consider alternatives for the con-
volutional layer, which needs to access information tens or
hundreds of pixels away (130 for the specific diffraction
grating used in our experiments) to capture the first-order
diffraction grating pattern. One can imagine two alternative
ways of achieving this without wide dilated convolutions.
One option would be to use extremely large (up to 260×260)
dense convolutions, computed using FFT [34]. However, this
massively increases the number of parameters and the model
would not be trainable in practice. The other option would
be to stack multiple layers with small convolution filters and
use pooling to reduce the receptive field, but maintaining
high spatial resolution would be tremendously difficult. Con-
sequently, we did not conduct experiments with alternative
convolution designs.

4.3 Evaluationmetrics

We evaluate our method using the dataset collected as
described in Sect. 4.1. We split the dataset into two parts,
239 images for training and 32 for evaluation. All results
presented are computed on the test set.We evaluate the recon-
struction quality using the two parts of our loss function
Eq. (2), SSIM for visual quality andCanberra distance for the
spectral quality, and additionallywith three independentmet-
rics not optimized for: mean square error (MSE) and mean
absolute error (MAE) for overall quality, and spectral angle
to compare spectral similarity [29].

5 Results and discussion

We compare the proposed model against the baselines
described in Sect. 4.2, summarizing the results in Table 1.
The “SSIM” and “Canberra” rows correspond to optimiz-
ing for only SSIM or only Canberra. The proposed wide
dilation network clearly outperforms the baselines that omit
critical components. The effect of omitting residual blocks
is clear, but not dramatic, and the model trained to minimize
Eq. (2) outperforms variants optimizing for SSIM and Can-
berra alone, evenwhen the quality ismeasured on the specific
loss itself. This is strong indication of the combination being
a useful learning target.

Besides the numerical comparisons, we explore the qual-
ity of the reconstructed HS images visually. Figure 4 demon-
strates both spatial and spectral accuracy for a randomly
selected validation image. For validating spatial accuracy,
we collapse the HS image back into RGB image by weighted
summation over the spectral channels with weights show in
Fig. 5). The accuracy of spectral reconstruction is studied by
comparing spectra associated with individual pixels against
the ground truth. In summary, the visualization reveals the
method accurately reconstructs the HS image, but not with-
out errors. TheRGB summaries and individual spectral slices
represent the spatial characteristics of the scene well, and
the main spectral characteristics are correct even though the
actual intensities deviate somewhat from the ground truth.

Comparing the properties of narrow wavelength band
monochromatic images (Fig. 4) with the results presented in
[18], we note that our method produces distinctly less blurry
images and the spectra of individual pixels follow much
more closely the ground truth. Visually the narrow wave-
length band monochromatic images in [17] appear on par
with images produced by our method, although our method
produces over four times the number of channels. In contrast

Table 1 The proposed wide dilation network outperforms all three
baselines (Sect. 4.2) according to five different metrics: the mean
squared error (MSE, scale 10−10), mean absolute error (MAE), Can-
berra distance, spectral angle of each pixel), and SSIM

Method MSE MAE Canberra Angle SSIM

No residuals 0.89 0.014 0.050 0.070 0.9611

Only SSIM loss 0.88 0.013 0.048 0.057 0.9716

Only Canberra loss 1.05 0.010 0.032 0.048 0.9718

Full method 0.49 0.008 0.028 0.045 0.9800

For all metrics lower is better, except for SSIM where higher is bet-
ter. The methods listed are (1) no residual blocks, (2) only SSIM loss,
(3) only Canberra loss, and (4) all of the previous combined. Impor-
tantly, the proposed method outperforms direct optimization of SSIM
and Canberra distance also when measured using the optimization cri-
terion itself
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Fig. 4 (Left): illustration of a prototypical reconstructedHS image, rep-
resented as RGB summary and as four individual channels in top row,
demonstrating high fidelity of both the RGB summary and individual

channels. (Right): comparison of pixel-wise spectra of the reconstruc-
tion and ground truth. While the reconstruction is not exact, it matches
the key characteristics well for the whole spectral range

to [17], the diffraction grating required by ourmethodweighs
less and our method is computationally much faster.

We further analyze the reconstruction quality by error
analysis, separately for the spectral and spatial character-
istics. Figure 6 (top) presents the average spectrum over all
validation images, indicating goodmatch between the recon-
struction and theground truth,with a slight bias toward longer
wavelengths.

For analyzing the spatial distribution of errors, we divide
the images into 15 × 15 areas of 26 × 26 pixels each, and
compute the mean errors for those [Fig. 6 (bottom)]. The
errors are larger in the lower bottom half of the image, which

Fig. 5 Color matching function (CMF) values used for red, green and
blue for the visible spectrum, used for collapsing a hyperspectral image
into RGB image for visual comparison. The CMF values are based on
the intensity perception to a particular wavelength for particular cone
cell type (long, medium and short) for an typical human observer (color
figure online)[36]

is where the objects were mostly located. Consequently, we
note that the quantitative evaluation in Table 1 character-
izes the quality of the images only in the area where the
objects were placed, because we cannot accurately evalu-
ate the output of the network for images in areas of constant
background in all available images. The largest objects in the
synthesized images are approximately 286×338, resulting in
858×1, 014 high-quality synthesized images with threefold
dilation upscaling. The neural network itself is agnostic of the
image content and could be re-trained on images covering the
whole area. Both training and evaluation time would remain
the same, and we expect the accuracy to remain similar.

Finally, we demonstrate reconstruction of higher resolu-
tion HS images using dilation upscaling and high-resolution
diffraction images. Figure 7 presents an example with 2×
and 3× increase in resolution in both directions. The scaled-
up images are clearly more sharp, but start to exhibit artifacts
such as color bleeding. This is in part due to slight rotation
present in the original image pairs, and in part due to the
residual blocks being trained on lower-resolution images.

We also note that our data were collected under constant
lighting conditions, and hence the model would not directly
generalize for arbitrary environments. However, this can be
remedied by training themodel on a larger data set with more
heterogeneity in the lighting spectrum. Collecting such data
is feasible since our results indicate that already a relatively
small number of images taken in each context is sufficient.
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Fig. 6 (Top) Average spectrum for the test set images for ground truth
(blue) and reconstructed (red) HS images shows that there is a slight
bias in average intensity toward the end of the spectrum. The peaks
correspond to the spectrum of the light sources. (Bottom) distribution
of error by spatial location, summarized for square blocks of 26 by 26
pixels. The bottom left corner is a minor artifact of the imaging setup,
and otherwise the error correlates with the placement of the objects; the
top of the images was mostly background (color figure online)

Further, our experimental setup is limited to the visible light
spectrum and does not account for the near-infrared wave-
lengths that the Specim IQ camera [2], and most other HS
cameras, capture. This is because the cameraweused, asmost
digital cameras, filters out the infrared wavelengths. There
is no reason to believe our method would not generalize to
the near-infrared range (approximately 700-1000nm by sim-
ply using a modified DSLR with the infrared filter removed.
Extending the approach for ultraviolet range (below 400nm)
would, however, require using different sensors, since stan-

dard digital cameras have extremely low sensitivity in that
range. Finally, we have not studied how the choice of the
lens affects results, but we suspect that the residual network
could learn to compensate for effects of, for example, chro-
matic aberration.

6 Conclusion

We have presented a practical, cost-effective method for
acquiring hyperspectral images using a standard digital cam-
era accompanied with a diffraction grating and a machine
learning algorithm trained on pairs of diffraction grating
and ground truth HS images. Our solution can be applied
to almost any type of digital camera, including smartphones.
Even though the idea of reconstructing hyperspectral images
by combination of a computational algorithm and a passive
filter is not new [14,17,18,24], our approach is the first one
that can provide snapshot images of sufficient spatial and
spectral dimensions in less than a second.

We showed that it is possible to generate high-quality
images based on a very small data set, thanks to a model
inspired by physical properties of diffraction yet trained end-
to-end in a data-driven manner. The resulting images capture
the spatial details and spectral characteristics of the target
faithfully, butwould not reach the accuracy required for high-
precision scientific measurement of spectral characteristics.
This is perfectly acceptable for a wide range of applications
of HS imaging; tasks such as object classification, food qual-
ity control [6] or foreign object detection[35] would not be
affected byminor biases and noise of our reconstruction algo-
rithm. Hence, our solution provides tangible cost benefits
in several HS imaging applications, while opening up new
ones due to high spatial resolution (with further up-scaling
with built-in super-resolution) and portability. Further, many

Fig. 7 Illustration of dilation upscaling for producing HS images of
resolution higher than what was available for training. (Left) 384×384
image corresponding to the size of the training images, presented as

RGB summary of the reconstruction. (Middle and right) the same image
in resolutions of 768×768 and 1152×1152, respectively. The upscaled
images are sharper, but start to suffer from artifacts and bleeding
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existing machine learning methods that have been developed
for satellite images, such as [4,5], can now be used on scenes
taken on the ground.

Acknowledgements Wethank theAcademyofFinland (Grant 1266969)
for partial funding, and the Finnish Grid and Cloud Infrastructure
(urn:nbn:fi:research-infras-2016072533) for computational resources.

Funding Open access funding provided by University of Helsinki
including Helsinki University Central Hospital.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Grahn, H., Geladi, P.: Techniques and Applications of Hyperspec-
tral Image Analysis. Wiley, New York (2007)

2. Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S.,
Thomas, S., Bohnenkamp,D., Kuska,M., Jussila, J., Salo, H., et al.:
Specim IQ: evaluation of a new, miniaturized handheld hyperspec-
tral camera and its application for plant phenotyping and disease
detection. Sensors 18(2), 441 (2018)

3. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral
imaging applications. IEEE Signal Process. Maga. 19(1), 29–43
(2002)

4. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.:
Deep supervised learning for hyperspectral data classification
through convolutional neural networks. In: 2015 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS),
pp. 4959–4962. IEEE (2015)

5. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based
classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 7(6), 2094–2107 (2014)

6. Gowen, A., O’Donnell, C., Cullen, P., Downey, G., Frias, J.: Hyper-
spectral imaging-an emerging process analytical tool for food
quality and safety control. Trends Food Sci. Technol. 18(12), 590–
598 (2007)

7. Ellis, J.M., Davis, H., Zamudio, J.A.: Exploring for onshore oil
seeps with hyperspectral imaging. Oil Gas J. 99(37), 49–58 (2001)

8. Liu, Z., Yan, J.-Q., Zhang, D., Li, Q.-L.: Automated tongue seg-
mentation in hyperspectral images formedicine. Appl. Opt. 46(34),
8328–8334 (2007)

9. Lu,G., Fei,B.:Medical hyperspectral imaging: a review. J.Biomed.
Opt. 19(1), 010901 (2014)

10. Wong, G.: Snapshot hyperspectral imaging and practical applica-
tions. In: Journal of Physics: Conference Series, vol. 178, no. 1, p.
012048. IOP Publishing (2009)

11. Geelen, B., Tack, N., Lambrechts, A.: A compact snapshot mul-
tispectral imager with a monolithically integrated per-pixel filter
mosaic. In: Advanced Fabrication Technologies for Micro/Nano

Optics and Photonics VII, vol. 8974, p. 89740L. International Soci-
ety for Optics and Photonics (2014)

12. Guo, B., Näsilä, A., Trops, R., Havia, T., Stuns, I., Saari, H., Ris-
sanen, A.: Wide-band large-aperture Ag surface-micro-machined
MEMS Fabry–Perot interferometers (AgMFPIs) for miniaturized
hyperspectral imaging. In: MOEMS and Miniaturized Systems
XVII, vol. 10545, p. 105450U. International Society for Optics
and Photonics (2018)

13. Wang, L., Xiong, Z., Huang, H., Shi, G., Wu, F., Zeng, W.: High-
speed hyperspectral video acquisition by combining Nyquist and
compressive sampling. IEEE Trans. Pattern Anal. Mach. Intell.
41(4), 857–870 (2019)

14. Okamoto, T., Yamaguchi, I.: Simultaneous acquisition of spectral
image information. Opt. Lett. 16(16), 1277–1279 (1991)

15. Descour, M., Dereniak, E.: Computed-tomography imaging spec-
trometer: experimental calibration and reconstruction results.Appl.
Opt. 34(22), 4817–4826 (1995)

16. Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M.S., Bear-
man, G.H.: Snapshot hyperspectral imaging in ophthalmology. J.
Biomed. Opt. 12(1), 014036 (2007)

17. Baek, S.-H., Kim, I., Gutierrez, D., Kim, M.H.: Compact single-
shot hyperspectral imaging using a prism. ACM Trans. Graph.
(TOG) 36(6), 217 (2017)

18. Golub, M.A., Averbuch, A., Nathan, M., Zheludev, V.A., Hauser,
J., Gurevitch, S., Malinsky, R., Kagan, A.: Compressed sensing
snapshot spectral imaging by a regular digital camerawith an added
optical diffuser. Appl. Opt. 55(3), 432–443 (2016)

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436 (2015)

20. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z.: et al.,
Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

21. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

22. Hagen,N.A.,Kudenov,M.W.:Reviewof snapshot spectral imaging
technologies. Opt. Eng. 52(9), 090901 (2013)

23. Goldstein, T., Osher, S.: The split Bregman method for L1-
regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

24. Habel, R., Kudenov, M., Wimmer, M.: Practical spectral photogra-
phy. In: Computer Graphics Forum, vol. 31, no. 2pt2, pp. 449–458.
Wiley Online Library (2012)

25. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated con-
volutions (2015). ArXiv preprint arXiv:1511.07122

26. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep
learning (2016). ArXiv preprint arXiv:1603.07285

27. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activa-
tion function, vol. 7 (2017). ArXiv preprint arXiv:1710.05941

28. Heinz, D.C., et al.: Fully constrained least squares linear spectral
mixture analysis method for material quantification in hyperspec-
tral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545
(2001)

29. Deborah, H., Richard, N., Hardeberg, J.Y.: A comprehensive eval-
uation of spectral distance functions and metrics for hyperspectral
image processing. IEEE J. Sel. Top. Appl. EarthObs. Remote Sens.
8(6), 3224–3234 (2015)

30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image
quality assessment: from error visibility to structural similarity.
IEEE Trans. Image Process. 13(4), 600–612 (2004)

31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization
(2014). ArXiv preprint arXiv:1412.6980

32. Rom, R.: On the cepstrum of two-dimensional functions (corresp.).
IEEE Trans. Inf. Theory 21(2), 214–217 (1975)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1412.6980


Snapshot hyperspectral imaging using wide dilation networks Page 11 of 11     9 

33. Briechle, K., Hanebeck, U.D.: Template matching using fast nor-
malized cross correlation. In: Optical Pattern Recognition XII, vol.
4387, pp. 95–102. International Society for Optics and Photonics
(2001)

34. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional
networks through FFTS (2013). ArXiv preprint arXiv:1312.5851

35. Guo, J., Ying, Y., Li, J., Rao, X., Kang, Y., Shi, Z.: Detection of
foreign materials on surface of ginned cotton by hyper-spectral
imaging. Trans. Chin. Soc. Agric. Eng. 28(21), 126–134 (2012)

36. Fairchild, M.D.: Color Appearance Models. Wiley, New York
(2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mikko E. Toivonen is a PhD student at the Department of Com-
puter Science, University of Helsinki, Finland. He received his MSc
in Communications Engineering from the Helsinki University of Tech-
nology, Finland, in 2007. He is researching machine learning applied
to hyperspectral imaging.

ChangRajani is a PhD student at the Department of Computer Science,
University of Helsinki. He received his MSc in Computer Science
from the University of Helsinki in 2018. He works on Bayesian deep
learning with high-dimensional physical data.

Arto Klami received MSc (2003) and PhD (2008) degrees (with dis-
tinction) in computer science from Helsinki University of Technology,
Department of Computer and Information Science, Finland, and the
title of docent in Information and Computer Science at Aalto Univer-
sity, Finland, in 2013. He is currently Assistant Professor at Univer-
sity of Helsinki, Department of Computer Science, and a member of
Helsinki Institute for Information Technology HIIT and Finnish Cen-
ter for Artificial Intelligence FCAI. His main research area is statistical
machine learning and Bayesian inference, with applications in com-
putational physics, spectral imaging, and modelling human behaviour.
He has also contributions in data integration, computational biology,
human–computer interaction, and computational neuroscience. He has
authored more than 60 scientific articles (H-index 23 GS) on these top-
ics.

123

http://arxiv.org/abs/1312.5851

	Snapshot hyperspectral imaging using wide dilation networks
	Abstract
	1 Introduction
	2 Background: hyperspectral imaging
	2.1 Dispersion and diffraction
	2.2 Standard hyperspectral imaging
	2.3 Passive hyperspectral imaging

	3 Methods
	3.1 CNNs for diffraction-based HS imaging
	3.2 Convolution design
	3.3 Loss function
	3.4 Selection of dilation rates
	3.5 Dilation upscaling

	4 Materials and evaluation
	4.1 Data collection
	4.2 Model variants
	4.3 Evaluation metrics

	5 Results and discussion
	6 Conclusion
	Acknowledgements
	References




