65 research outputs found

    Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia

    Get PDF
    Smoke haze, caused by vegetation and peat fires in Southeast Asia, is of major concern because of its adverse impact on regional air quality. We apply two different methods (a chemical transport model and a Lagrangian atmospheric transport model) to identify the locations of fires contributing to the increased mass concentration of particulate matter with diameters less than 2.5 μ m (PM 2.5 ) in Singapore over the period 2004–09. We find that fires in southern Sumatra account for the greatest percentage of the total fire enhancement to PM 2.5 concentrations in Singapore (42–62%), with fires in central Sumatra and Kalimantan contributing 21–35% and 14–15%, respectively. Furthermore, we find that fires in these regions also increase PM 2.5 concentrations in other major cities across Southeast Asia. Our results suggest that acting to reduce fires in southern and central Sumatra (specifically in the eastern parts of the provinces of Jambi, South Sumatra, Lampung and Riau) and southwest Kalimantan (the southern extent of the provinces of West, Central and South Kalimantan) would have the greatest benefit to particulate air quality in Singapore and more widely across Southeast Asia

    A randomized double blind control trial comparing filgrastim and pegfilgrastim in cyclophosphamide peripheral blood hematopoietic stem cell mobilization

    Get PDF
    There are few randomized trials comparing filgrastim and pegfilgrastim in peripheral blood stem cell mobilization (PBSCM). None of the trials studied the effects of the timing of pegfilgrastim administration on the outcomes of mobilization. We conducted a randomized triple blind control trial comparing the outcomes of filgrastim 5 microg/kg daily from day 3 onwards, 'early' pegfilgrastim 6 mg on day 3 and 'delayed' pegfilgrastim 6 mg on day 7 in cyclophosphamide PBSCM in patients with no previous history of mobilization. Peripheral blood (PB) CD34+ cell count was checked on day 8 and day 11 onward. Apheresis was started when PB CD34+ >/= 10/microl from day 11 onward. The primary outcome was the successful mobilization rate, defined as cumulative collection of >/=2 x 10(6)/kg CD34+ cells in three or less apheresis. The secondary outcomes were the day of neutrophil and platelet engraftment post transplantation. There were 156 patients randomized and 134 patients' data analyzed. Pegfilgrastim 6 mg day 7 produced highest percentage of successful mobilization, 34 out of 48 (70.8%) analyzed patients, followed by daily filgrastim, 28 out of 44 (63.6%) and day 3 pegfilgrastim, 20 out of 42 (47.6%) (p = 0.075). Pegfilgrastim day 7 and daily filgrastim reported 1.48 (p = 0.014) and 1.49 (p = 0.013) times higher successful mobilization rate respectively as compared to pegfilgrastim day 3 after adjusting for disease, gender and exposure to myelotoxic agent. Multiple myeloma patients were three times more likely to achieve successful mobilization as compared to acute leukemia or lymphoma patients. Pegfilgrastim avoided the overshoot of white cells compared to filgrastim. There was no difference in the duration of both white cells and platelet recovery post transplantation between the three interventional arms

    Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in Hepatocellular Carcinoma: the PLANET study

    Get PDF
    Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for Hepatocellular Carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across TNM stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types

    Genomic landscape of lung adenocarcinoma in East Asians

    Get PDF
    Lung cancer is the world’s leading cause of cancer death and shows strong ancestry disparities. By sequencing and assembling a large genomic and transcriptomic dataset of lung adenocarcinoma (LUAD) in individuals of East Asian ancestry (EAS; n = 305), we found that East Asian LUADs had more stable genomes characterized by fewer mutations and fewer copy number alterations than LUADs from individuals of European ancestry. This difference is much stronger in smokers as compared to nonsmokers. Transcriptomic clustering identified a new EAS-specific LUAD subgroup with a less complex genomic profile and upregulated immune-related genes, allowing the possibility of immunotherapy-based approaches. Integrative analysis across clinical and molecular features showed the importance of molecular phenotypes in patient prognostic stratification. EAS LUADs had better prediction accuracy than those of European ancestry, potentially due to their less complex genomic architecture. This study elucidated a comprehensive genomic landscape of EAS LUADs and highlighted important ancestry differences between the two cohorts

    A multi-factorial analysis of response to warfarin in a UK prospective cohort

    Get PDF
    Background Warfarin is the most widely used oral anticoagulant worldwide, but it has a narrow therapeutic index which necessitates constant monitoring of anticoagulation response. Previous genome-wide studies have focused on identifying factors explaining variance in stable dose, but have not explored the initial patient response to warfarin, and a wider range of clinical and biochemical factors affecting both initial and stable dosing with warfarin. Methods A prospective cohort of 711 patients starting warfarin was followed up for 6 months with analyses focusing on both non-genetic and genetic factors. The outcome measures used were mean weekly warfarin dose (MWD), stable mean weekly dose (SMWD) and international normalised ratio (INR) > 4 during the first week. Samples were genotyped on the Illumina Human610-Quad chip. Statistical analyses were performed using Plink and R. Results VKORC1 and CYP2C9 were the major genetic determinants of warfarin MWD and SMWD, with CYP4F2 having a smaller effect. Age, height, weight, cigarette smoking and interacting medications accounted for less than 20 % of the variance. Our multifactorial analysis explained 57.89 % and 56.97 % of the variation for MWD and SMWD, respectively. Genotypes for VKORC1 and CYP2C9*3, age, height and weight, as well as other clinical factors such as alcohol consumption, loading dose and concomitant drugs were important for the initial INR response to warfarin. In a small subset of patients for whom data were available, levels of the coagulation factors VII and IX (highly correlated) also played a role. Conclusion Our multifactorial analysis in a prospectively recruited cohort has shown that multiple factors, genetic and clinical, are important in determining the response to warfarin. VKORC1 and CYP2C9 genetic polymorphisms are the most important determinants of warfarin dosing, and it is highly unlikely that other common variants of clinical importance influencing warfarin dosage will be found. Both VKORC1 and CYP2C9*3 are important determinants of the initial INR response to warfarin. Other novel variants, which did not reach genome-wide significance, were identified for the different outcome measures, but need replication

    Identification and Classification of Conserved RNA Secondary Structures in the Human Genome

    Get PDF
    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3′UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore