10 research outputs found

    Spatial patterns of diatom diversity and community structure in ancient Lake Ohrid

    Get PDF
    [EN] The extraordinary diversity in long-lived lakes is largely driven by distinct eco-evolutionary processes. With their unique biota and numerous endemic taxa, these lakes are key settings for fundamental studies related to ecology, diversity, and evolution. Here, we test how the environment shapes diatom diversity and community patterns over space in ancient Lake Ohrid. By applying Bray–Curtis similarity analyses of diatom community data, including widespread and endemic taxa, we identified two major zones: littoral and sublittoral. The latter one is being characterized with higher endemic diversity. The a and b diatom diversity and community distribution in the northern and eastern part of the lake are influenced by the presence of vertical (bathymetrical) and horizontal barriers. The zonation of the diatom communities appears driven by two large-scale factors: (i) water depth, and (ii) water chemistry, primarily, the concentration of total phosphorus, nitrogen ammonia, and conductivity. Both drivers appear to equally influence diatom diversity and community patterns. We present initial data on diatom–environment relations, where the results support earlier ecological studies emphasizing the relevance of ongoing human-induced eutrophication in the northern lake area. This study provides background information on the role of the environment in structuring contemporary diatom diversity. However, future research needs to focus on the biotic component including species competition in order to reveal the mechanisms driving spatial community dynamics in Lake OhridSIThe presented study would not have been possible without the support of the Western Balkan Environmental Network project (www.newenproject.org

    Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem

    Get PDF
    The scarcity of high-resolution empirical data directly tracking diversity over time limits our understanding of speciation and extinction dynamics and the drivers of rate changes. Here, we analyze a continuous species-level fossil record of endemic diatoms from ancient Lake Ohrid, along with environmental and climate indicator time series since lake formation 1.36 million years (Ma) ago. We show that speciation and extinction rates nearly simultaneously decreased in the environmentally dynamic phase after ecosystem formation and stabilized after deep-water conditions established in Lake Ohrid. As the lake deepens, we also see a switch in the macroevolutionary trade-off, resulting in a transition from a volatile assemblage of short-lived endemic species to a stable community of long-lived species. Our results emphasize the importance of the interplay between environmental/climate change, ecosystem stability, and environmental limits to diversity for diversification processes. The study also provides a new understanding of evolutionary dynamics in long-lived ecosystems

    Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years

    Get PDF
    Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance

    Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa

    No full text
    In order to understand the panarchy and interactions since the last interglacial period in the oldest, most diverse and hydrologically connected European lake system, we assess changes in the diatom record and selected geochemistry data from Lake Ohrid's "DEEP site" core and compare it with the diatom and multi-proxy data from Lake Prespa core Co1215. Driven by climate forcing, tephra impact and/or human influence, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial-regime" and "glacial-regime". The patterns of regime shifts appear synchronous in both lakes, while differences occur in the inferred amplitudes of the variations. The deeper Lake Ohrid shifted between ultraoligo- and oligotrophic regimes in contrast to the more shallow Lake Prespa, which shifts from (oligo-) mesotrophic to eutrophic conditions. In response to external forcing, Lake Ohrid exhibits a high capacity to buffer disturbances, whereas Lake Prespa is much more resilient and "recovers" in relatively short time. This decoupling of the response is evident during the MIS 5/4 and 2/1 transitions, when Lake Ohrid displays prolonged and gradual changes. The lakes' specific differences in the response and feedback mechanisms and their different physical and chemical properties, probably confine a direct influence of Lake Prespa's shallow/eutrophic regimes over the productivity regimes of Lake Ohrid. Regime shifts of Lake Ohrid due to the hydrological connectivity with Lake Prespa are not evident in the data presented here. Moreover, complete ecological collapse did not happened in both lakes for the period presented in the study

    Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa

    Get PDF
    We reconstruct the aquatic ecosystem interactions since the last interglacialperiod in the oldest, most diverse, hydrologically connected European lakesystem, by using palaeolimnological diatom and selected geochemistry datafrom Lake Ohrid DEEP site core and equivalent data from Lake Prespa core,Co1215. Driven by climate forcing, the lakes experienced two adaptive cyclesduring the last 92 ka: interglacial and interstadial and glacial cycle. The short-term ecosystems reorganizations, e.g. regimeshifts within these cycles substantially differ between the lakes, as evidentfrom the inferred amplitudes of variation. The deeper Lake Ohrid shiftedbetween ultra oligo- and oligotrophic regimes in contrast to the muchshallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to ashallower, eutrophic lake and vice versa. Due to the high level of ecosystemstability (e.g. trophic state, lake level), Lake Ohrid appears relativelyresistant to external forcing, such as climate and environmental change.Recovering in a relatively short time from major climate change, Lake Prespa isa resilient ecosystem. At the DEEP site, the decoupling between the lakes\u27response to climate change is marked in the prolonged and gradual changesduring the MIS 5/4 and 2/1 transitions. These response differences and thelakes\u27 different physical and chemical properties may limit the influence ofLake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potentialhydrological change in Lake Prespa are not evident in the data presentedhere. Moreover, a complete collapse of the ecosystems functionality and lossof their diatom communities did not happen in either lake for the periodpresented in the study

    Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: The diatom record of lakes Ohrid and Prespa

    No full text
    We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid "DEEP site" core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The shortterm ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study

    Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem

    Get PDF
    The scarcity of high-resolution empirical data directly tracking diversity over time limits our understanding of speciation and extinction dynamics and the drivers of rate changes. Here, we analyze a continuous species-level fossil record of endemic diatoms from ancient Lake Ohrid, along with environmental and climate indicator time series since lake formation 1.36 million years (Ma) ago. We show that speciation and extinction rates nearly simultaneously decreased in the environmentally dynamic phase after ecosystem formation and stabilized after deep-water conditions established in Lake Ohrid. As the lake deepens, we also see a switch in the macroevolutionary trade-off, resulting in a transition from a volatile assemblage of short-lived endemic species to a stable community of long-lived species. Our results emphasize the importance of the interplay between environmental/climate change, ecosystem stability, and environmental limits to diversity for diversification processes. The study also provides a new understanding of evolutionary dynamics in long-lived ecosystems

    The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): Interim results from the SCOPSCO deep drilling project

    Get PDF
    This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates long-term variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard–Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role
    corecore