867 research outputs found
WO3 nanoparticles probes for direct electron transfer of proteins
Poster presented at the 4th International Conference on Bio-Sensing Technology, 10-13 May 2015, Lisbon
Elastic transport through dangling-bond silicon wires on H passivated Si(100)
We evaluate the electron transmission through a dangling-bond wire on
Si(100)-H (2x1). Finite wires are modelled by decoupling semi-infinite Si
electrodes from the dangling-bond wire with passivating H atoms. The
calculations are performed using density functional theory in a non-periodic
geometry along the conduction direction. We also use Wannier functions to
analyze our results and to build an effective tight-binding Hamiltonian that
gives us enhanced insight in the electron scattering processes. We evaluate the
transmission to the different solutions that are possible for the dangling-bond
wires: Jahn-Teller distorted ones, as well as antiferromagnetic and
ferromagnetic ones. The discretization of the electronic structure of the wires
due to their finite size leads to interesting transmission properties that are
fingerprints of the wire nature
Understanding Scanning Tunneling Microscopy Contrast Mechanisms on Metal Oxides: A Case Study
Cataloged from PDF version of article.A comprehensive analysis of contrast formation
mechanisms in scanning tunneling microscopy (STM) experiments on
a metal oxide surface is presented with the oxygen-induced
(2√2
√2)R45 missing row reconstruction of the Cu(100) surface
as a model system. Density functional theory and electronic
transport calculations were combined to simulate the STM imaging
behavior of pure and oxygen-contaminated metal tips with structurally
and chemically different apexes while systematically varying
bias voltage and tip sample distance. The resulting multiparameter
database of computed images was used to conduct an extensive comparison with experimental data. Excellent agreement was attained for a large
number of cases, suggesting that the assumed model tips reproduce most of the commonly encountered contrast-determining effects. Specifically, we find
that depending on the bias voltage polarity, copper-terminated tips allow selective imaging of two structurally distinct surface Cu sites, while oxygenterminated
tips show complex contrasts with pronounced asymmetry and tip sample distance dependence. Considering the structural and chemical
stability of the tips reveals that the copper-terminated apexes tend to react with surface oxygen at small tip sample distances. In contrast, oxygenterminated
tips are considerably more stable, allowing exclusive surface oxygen imaging at small tip sample distances. Our results provide a conclusive
understanding of fundamental STM imaging mechanisms, thereby providing guidelines for experimentalists to achieve chemically selective imaging by
properly selecting imaging parameters
Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208
We have undertaken a thorough dynamical investigation of five extrasolar
planetary systems using extensive numerical experiments. The systems Gl 777 A,
HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of
whether they could host terrestrial like planets in their habitable zones
(=HZ). First we investigated the mean motion resonances between fictitious
terrestrial planets and the existing gas giants in these five extrasolar
systems. Then a fine grid of initial conditions for a potential terrestrial
planet within the HZ was chosen for each system, from which the stability of
orbits was then assessed by direct integrations over a time interval of 1
million years. The computations were carried out using a Lie-series integration
method with an adaptive step size control. This integration method achieves
machine precision accuracy in a highly efficient and robust way, requiring no
special adjustments when the orbits have large eccentricities. The stability of
orbits was examined with a determination of the Renyi entropy, estimated from
recurrence plots, and with a more straight forward method based on the maximum
eccentricity achieved by the planet over the 1 million year integration.
Additionally, the eccentricity is an indication of the habitability of a
terrestrial planet in the HZ; any value of e>0.2 produces a significant
temperature difference on a planet's surface between apoapse and periapse. The
results for possible stable orbits for terrestrial planets in habitable zones
for the five systems are summarized as follows: for Gl 777 A nearly the entire
HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive
for a sufficiently long time, while for Gl 614 our results exclude terrestrial
planets moving in stable orbits within the HZ.Comment: 14 pages, 18 figures submitted to A&
Simultaneous measurement of multiple independent atomic-scale Interactions using scanning probe microscopy: data interpretation and the effect of cross-talk
Cataloged from PDF version of article.In high-resolution scanning probe microscopy, it is becoming increasingly common to simultaneously record multiple channels representing different tip-sample interactions to collect complementary information about the sample surface. A popular choice involves simultaneous scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) measurements, which are thought to reflect the chemical and electronic properties of the sample surface. With surface-oxidized Cu(100) as an example, we investigate whether atomic-scale information on chemical interactions can be reliably extracted from frequency shift maps obtained while using the tunneling current as the feedback parameter. Ab initio calculations of interaction forces between specific tip apexes and the surface are utilized to compare experiments with theoretical expectations. The examination reveals that constant-current operation may induce a noticeable influence of topography-feedback-induced cross-talk on the frequency shift data, resulting in misleading interpretations of local chemical interactions on the surface. Consequently, the need to apply methods such as 3D-AFM is emphasized when accurate conclusions about both the local charge density near the Fermi level, as provided by the STM channel, and the site-specific strength of tip-sample interactions (NC-AFM channel) are desired. We conclude by generalizing to the case where multiple atomic-scale interactions are being probed while only one of them is kept constant
Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution
In this paper we perform an analytical and numerical study of Extreme Value
distributions in discrete dynamical systems. In this setting, recent works have
shown how to get a statistics of extremes in agreement with the classical
Extreme Value Theory. We pursue these investigations by giving analytical
expressions of Extreme Value distribution parameters for maps that have an
absolutely continuous invariant measure. We compare these analytical results
with numerical experiments in which we study the convergence to limiting
distributions using the so called block-maxima approach, pointing out in which
cases we obtain robust estimation of parameters. In regular maps for which
mixing properties do not hold, we show that the fitting procedure to the
classical Extreme Value Distribution fails, as expected. However, we obtain an
empirical distribution that can be explained starting from a different
observable function for which Nicolis et al. [2006] have found analytical
results.Comment: 34 pages, 7 figures; Journal of Statistical Physics 201
Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar
Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approache
Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli
Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations
From Davydov solitons to decoherence-free subspaces: self-consistent propagation of coherent-product states
The self-consistent propagation of generalized [coherent-product]
states and of a class of gaussian density matrix generalizations is examined,
at both zero and finite-temperature, for arbitrary interactions between the
localized lattice (electronic or vibronic) excitations and the phonon modes. It
is shown that in all legitimate cases, the evolution of states reduces
to the disentangled evolution of the component states. The
self-consistency conditions for the latter amount to conditions for
decoherence-free propagation, which complement the Davydov soliton
equations in such a way as to lift the nonlinearity of the evolution for the
on-site degrees of freedom. Although it cannot support Davydov solitons, the
coherent-product ansatz does provide a wide class of exact density-matrix
solutions for the joint evolution of the lattice and phonon bath in compatible
systems. Included are solutions for initial states given as a product of a
[largely arbitrary] lattice state and a thermal equilibrium state of the
phonons. It is also shown that external pumping can produce self-consistent
Frohlich-like effects. A few sample cases of coherent, albeit not solitonic,
propagation are briefly discussed.Comment: revtex3, latex2e; 22 pages, no figs.; to appear in Phys.Rev.E
(Nov.2001
- …
