395 research outputs found

    Efficacy of lisdexamfetamine dimesylate throughout the day in children and adolescents with attention-deficit/hyperactivity disorder:results from a randomized, controlled trial

    Get PDF
    Lisdexamfetamine dimesylate (LDX) is a long-acting, prodrug stimulant therapy for patients with attention-deficit/hyperactivity disorder (ADHD). This randomized placebo-controlled trial of an optimized daily dose of LDX (30, 50 or 70 mg) was conducted in children and adolescents (aged 6–17 years) with ADHD. To evaluate the efficacy of LDX throughout the day, symptoms and behaviors of ADHD were evaluated using an abbreviated version of the Conners’ Parent Rating Scale-Revised (CPRS-R) at 1000, 1400 and 1800 hours following early morning dosing (0700 hours). Osmotic-release oral system methylphenidate (OROS-MPH) was included as a reference treatment, but the study was not designed to support a statistical comparison between LDX and OROS-MPH. The full analysis set comprised 317 patients (LDX, n = 104; placebo, n = 106; OROS-MPH, n = 107). At baseline, CPRS-R total scores were similar across treatment groups. At endpoint, differences (active treatment − placebo) in least squares (LS) mean change from baseline CPRS-R total scores were statistically significant (P < 0.001) throughout the day for LDX (effect sizes: 1000 hours, 1.42; 1400 hours, 1.41; 1800 hours, 1.30) and OROS-MPH (effect sizes: 1000 hours, 1.04; 1400 hours, 0.98; 1800 hours, 0.92). Differences in LS mean change from baseline to endpoint were statistically significant (P < 0.001) for both active treatments in all four subscales of the CPRS-R (ADHD index, oppositional, hyperactivity and cognitive). In conclusion, improvements relative to placebo in ADHD-related symptoms and behaviors in children and adolescents receiving a single morning dose of LDX or OROS-MPH were maintained throughout the day and were ongoing at the last measurement in the evening (1800 hours)

    ESCAlate – Adaptive treatment approach for adolescents and adults with ADHD: study protocol for a randomized controlled trial

    Get PDF
    Background: Over the last decade, a wide range of attention-deficit/hyperactivity disorder (ADHD) treatment approaches for adults, including both pharmacological interventions and psychosocial treatments, have been proposed and observed to be efficient. In practice, individual treatment concepts are based on results of clinical studies as well as international guidelines (NICE Guidelines) that recommend a step-by-step treatment approach. Since the evidence supporting this approach is limited, the aim of the present study is to determine an optimal intervention regarding severity levels of ADHD symptomatology conducting a randomized controlled trial. Method: We aim to include 279 ADHD subjects aged between 16 and 45 years. First, participants are randomized to either a face-to-face psychoeducation, telephone assisted self-help (TASH), or a waiting control group (Step 1). All participants assigned to the control group are treated using TASH after a 3-month waiting period. Participants are then allocated to one of three groups, based on their remaining severity level of ADHD symptoms, as (1) full responder, (2) partial responder, or (3) non-responder (Step 2). Full responders receive counseling, partial responders receive either counseling only or counseling and neurofeedback (NF), and non-responders receive either pharmacological treatment only or pharmacological treatment and NF, followed by a 3 month period without intervention. Discussion: The naturalistic sample is one of the study’s advantages, avoiding highly selective inclusion or exclusion criteria. The efficacy of an evidence-based stepped care intervention is explored by primary (reduction of severity of ADHD symptoms) and secondary outcomes (functional outcomes, e.g., quality of life, anger management, enhancement of psychosocial well-being). Predictors of therapeutic response and non-response are being investigated at each step of intervention. Further, sex differences are also being explored. Trial registration: This study is registered by the German Trial Register (reference number: DRKS00008975 ), 23 October 2015

    Blunted ventral striatal responses to anticipated rewards foreshadow problematic drug use in novelty-seeking adolescents

    Get PDF
    Novelty-seeking tendencies in adolescents may promote innovation as well as problematic impulsive behaviour, including drug abuse. Previous research has not clarified whether neural hyper- or hypo-responsiveness to anticipated rewards promotes vulnerability in these individuals. Here we use a longitudinal design to track 144 novelty-seeking adolescents at age 14 and 16 to determine whether neural activity in response to anticipated rewards predicts problematic drug use. We find that diminished BOLD activity in mesolimbic (ventral striatal and midbrain) and prefrontal cortical (dorsolateral prefrontal cortex) regions during reward anticipation at age 14 predicts problematic drug use at age 16. Lower psychometric conscientiousness and steeper discounting of future rewards at age 14 also predicts problematic drug use at age 16, but the neural responses independently predict more variance than psychometric measures. Together, these findings suggest that diminished neural responses to anticipated rewards in novelty-seeking adolescents may increase vulnerability to future problematic drug use

    Glutamatergic medication in the treatment of obsessive compulsive disorder (OCD) and autism spectrum disorder (ASD) - study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Compulsivity is a cross-disorder trait underlying phenotypically distinct psychiatric disorders that emerge in childhood or adolescence. Despite the effectiveness of serotonergic compounds in the treatment of obsessive-compulsive disorder, treatment-resistant symptoms remaining in 40 to 60 % of patients present a pressing clinical problem. There are currently no medications that effectively treat the core impairments of autism spectrum disorder. There is an urgent need for the development of conceptually novel pharmacological strategies. Agents targeting glutamate neurotransmission, such as memantine, represent promising candidates. This proof-of-concept clinical study will allow pilot-testing of memantine for both clinical effectiveness and tolerability/safety. Memantine is an N-methyl-D-aspartate receptor antagonist, approved for the treatment of Alzheimer's dementia in a number of countries. METHODS/DESIGN: This 12-week study has an add-on, randomised, double-blind, placebo-controlled design of treatment with memantine, including an up-titration phase (forced flexible dose design, 5-15 mg/day), in patients aged 6-17 years and 9 months with obsessive-compulsive disorder or autism spectrum disorder. It is planned to include patients with obsessive-compulsive disorder (N = 50) or autism spectrum disorder (N = 50) across four centres in three European countries. Patients will be randomly assigned to memantine or placebo in a 1:1 ratio. Primary objectives are the investigation of the effectiveness of memantine in paediatric patients for improving symptoms of compulsivity (primary outcome measure: total score on the Children's Yale-Brown Obsessive-Compulsive Scale) and to explore its tolerability and safety. Secondary objectives are to explore the effects of memantine at the level of structure, function and biochemistry of the fronto-striatal circuits, and to collect blood for genetic analyses and biomarkers. Tertiary objectives are to explore the role of new candidate genes and pathways for compulsivity by linking genes to clinical phenotypes, response to treatment, neurocognitive test performance, and key structural and functional neuroimaging measures of the fronto-striatal circuits and to explore biomarkers/proteomics for compulsivity traits. DISCUSSION: This study is part of the large, translational project TACTICS ( http://www.tactics-project.eu/ ) that is funded by the European Union and investigates the neural, genetic and molecular factors involved in the pathogenesis of compulsivity. Its results will provide clinically relevant solid information on potential new mechanisms and medication treatment in obsessive-compulsive and autism spectrum disorders. TRIAL REGISTRATION: EudraCT Number: 2014-003080-38 , date of registration: 14 July 2014

    COMPULS:Design of a multicenter phenotypic, cognitive, genetic, and magnetic resonance imaging study in children with compulsive syndromes

    Get PDF
    Background: Compulsivity, the closely linked trait impulsivity and addictive behaviour are associated with several neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive compulsive disorder (OCD). All three disorders show impaired fronto-striatal functioning, which may be related to altered glutamatergic signalling. Genetic factors are also thought to play an important role in the aetiology of compulsivity-related disorders. Methods: The COMPULS study is a multi-center study designed to investigate the relationship between the traits compulsivity, impulsivity, and, to a lesser extent, addictive behaviour within and across the neurodevelopmental disorders ADHD, ASD, and OCD. This will be done at the phenotypic, cognitive, neural, and genetic level. In total, 240 participants will take part in COMPULS across four different sites in Europe. Data collection will include diagnostic interviews, behavioural questionnaires, cognitive measures, structural, functional and spectral neuroimaging, and genome-wide genetic information. Discussion: The COMPULS study will offer the unique opportunity to investigate several key aspects of compulsivity across a large cohort of ADHD, ASD and OCD patients

    Patterns of connectome variability in autism across five functional activation tasks: findings from the LEAP project

    Full text link
    Background: Autism spectrum disorder (autism) is a complex neurodevelopmental condition with pronounced behavioral, cognitive, and neural heterogeneities across individuals. Here, our goal was to characterize heterogeneity in autism by identifying patterns of neural diversity as reflected in BOLD fMRI in the way individuals with autism engage with a varied array of cognitive tasks. Methods: All analyses were based on the EU-AIMS/AIMS-2-TRIALS multisite Longitudinal European Autism Project (LEAP) with participants with autism (n = 282) and typically developing (TD) controls (n = 221) between 6 and 30 years of age. We employed a novel task potency approach which combines the unique aspects of both resting state fMRI and task-fMRI to quantify task-induced variations in the functional connectome. Normative modelling was used to map atypicality of features on an individual basis with respect to their distribution in neurotypical control participants. We applied robust out-of-sample canonical correlation analysis (CCA) to relate connectome data to behavioral data. Results: Deviation from the normative ranges of global functional connectivity was greater for individuals with autism compared to TD in each fMRI task paradigm (all tasks p < 0.001). The similarity across individuals of the deviation pattern was significantly increased in autistic relative to TD individuals (p < 0.002). The CCA identified significant and robust brain-behavior covariation between functional connectivity atypicality and autism-related behavioral features. Conclusions: Individuals with autism engage with tasks in a globally atypical way, but the particular spatial pattern of this atypicality is nevertheless similar across tasks. Atypicalities in the tasks originate mostly from prefrontal cortex and default mode network regions, but also speech and auditory networks. We show how sophisticated modeling methods such as task potency and normative modeling can be used toward unravelling complex heterogeneous conditions like autism

    The empirical replicability of task-based fMRI as a function of sample size

    Get PDF
    Replicating results (i.e. obtaining consistent results using a new independent dataset) is an essential part of good science. As replicability has consequences for theories derived from empirical studies, it is of utmost importance to better understand the underlying mechanisms influencing it. A popular tool for non-invasive neuroimaging studies is functional magnetic resonance imaging (fMRI). While the effect of underpowered studies is well documented, the empirical assessment of the interplay between sample size and replicability of results for task-based fMRI studies remains limited. In this work, we extend existing work on this assessment in two ways. Firstly, we use a large database of 1400 subjects performing four types of tasks from the IMAGEN project to subsample a series of independent samples of increasing size. Secondly, replicability is evaluated using a multi-dimensional framework consisting of 3 different measures: (un)conditional test-retest reliability, coherence and stability. We demonstrate not only a positive effect of sample size, but also a trade-off between spatial resolution and replicability. When replicability is assessed voxelwise or when observing small areas of activation, a larger sample size than typically used in fMRI is required to replicate results. On the other hand, when focussing on clusters of voxels, we observe a higher replicability. In addition, we observe variability in the size of clusters of activation between experimental paradigms or contrasts of parameter estimates within these

    Sensory salience processing moderates attenuated gazes on faces in autism spectrum disorder: a case–control study

    Full text link
    Background: Attenuated social attention is a key marker of autism spectrum disorder (ASD). Recent neuroimaging findings also emphasize an altered processing of sensory salience in ASD. The locus coeruleus-norepinephrine system (LC-NE) has been established as a modulator of this sensory salience processing (SSP). We tested the hypothesis that altered LC-NE functioning contributes to different SSP and results in diverging social attention in ASD. Methods: We analyzed the baseline eye-tracking data of the EU-AIMS Longitudinal European Autism Project (LEAP) for subgroups of autistic participants (n = 166, age = 6-30 years, IQ = 61-138, gender [female/male] = 41/125) or neurotypical development (TD; n = 166, age = 6-30 years, IQ = 63-138, gender [female/male] = 49/117) that were matched for demographic variables and data quality. Participants watched brief movie scenes (k = 85) depicting humans in social situations (human) or without humans (non-human). SSP was estimated by gazes on physical and motion salience and a corresponding pupillary response that indexes phasic activity of the LC-NE. Social attention is estimated by gazes on faces via manual areas of interest definition. SSP is compared between groups and related to social attention by linear mixed models that consider temporal dynamics within scenes. Models are controlled for comorbid psychopathology, gaze behavior, and luminance. Results: We found no group differences in gazes on salience, whereas pupillary responses were associated with altered gazes on physical and motion salience. In ASD compared to TD, we observed pupillary responses that were higher for non-human scenes and lower for human scenes. In ASD, we observed lower gazes on faces across the duration of the scenes. Crucially, this different social attention was influenced by gazes on physical salience and moderated by pupillary responses. Limitations: The naturalistic study design precluded experimental manipulations and stimulus control, while effect sizes were small to moderate. Covariate effects of age and IQ indicate that the findings differ between age and developmental subgroups. Conclusions: Pupillary responses as a proxy of LC-NE phasic activity during visual attention are suggested to modulate sensory salience processing and contribute to attenuated social attention in ASD

    Gray matter covariations and core symptoms of autism: the EU-AIMS Longitudinal European Autism Project.

    Get PDF
    BACKGROUND: Voxel-based morphometry (VBM) studies in autism spectrum disorder (autism) have yielded diverging results. This might partly be attributed to structural alterations being associating with the combined influence of several regions rather than with a single region. Further, these structural covariation differences may relate to continuous measures of autism rather than with categorical case-control contrasts. The current study aimed to identify structural covariation alterations in autism, and assessed canonical correlations between brain covariation patterns and core autism symptoms. METHODS: We studied 347 individuals with autism and 252 typically developing individuals, aged between 6 and 30 years, who have been deeply phenotyped in the Longitudinal European Autism Project. All participants' VBM maps were decomposed into spatially independent components using independent component analysis. A generalized linear model (GLM) was used to examine case-control differences. Next, canonical correlation analysis (CCA) was performed to separately explore the integrated effects between all the brain sources of gray matter variation and two sets of core autism symptoms. RESULTS: GLM analyses showed significant case-control differences for two independent components. The first component was primarily associated with decreased density of bilateral insula, inferior frontal gyrus, orbitofrontal cortex, and increased density of caudate nucleus in the autism group relative to typically developing individuals. The second component was related to decreased densities of the bilateral amygdala, hippocampus, and parahippocampal gyrus in the autism group relative to typically developing individuals. The CCA results showed significant correlations between components that involved variation of thalamus, putamen, precentral gyrus, frontal, parietal, and occipital lobes, and the cerebellum, and repetitive, rigid and stereotyped behaviors and abnormal sensory behaviors in autism individuals. LIMITATIONS: Only 55.9% of the participants with autism had complete questionnaire data on continuous parent-reported symptom measures. CONCLUSIONS: Covaried areas associated with autism diagnosis and/or symptoms are scattered across the whole brain and include the limbic system, basal ganglia, thalamus, cerebellum, precentral gyrus, and parts of the frontal, parietal, and occipital lobes. Some of these areas potentially subserve social-communicative behavior, whereas others may underpin sensory processing and integration, and motor behavior
    • …
    corecore