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Abstract 

Background: Voxel‑based morphometry (VBM) studies in autism spectrum disorder (autism) have yielded diverging 
results. This might partly be attributed to structural alterations being associating with the combined influence 
of several regions rather than with a single region. Further, these structural covariation differences may relate to 
continuous measures of autism rather than with categorical case–control contrasts. The current study aimed to 
identify structural covariation alterations in autism, and assessed canonical correlations between brain covariation 
patterns and core autism symptoms.

Methods: We studied 347 individuals with autism and 252 typically developing individuals, aged between 6 and 
30 years, who have been deeply phenotyped in the Longitudinal European Autism Project. All participants’ VBM maps 
were decomposed into spatially independent components using independent component analysis. A generalized 
linear model (GLM) was used to examine case–control differences. Next, canonical correlation analysis (CCA) was 
performed to separately explore the integrated effects between all the brain sources of gray matter variation and two 
sets of core autism symptoms.

Results: GLM analyses showed significant case–control differences for two independent components. The first 
component was primarily associated with decreased density of bilateral insula, inferior frontal gyrus, orbitofrontal 
cortex, and increased density of caudate nucleus in the autism group relative to typically developing individuals. 
The second component was related to decreased densities of the bilateral amygdala, hippocampus, and 
parahippocampal gyrus in the autism group relative to typically developing individuals. The CCA results showed 
significant correlations between components that involved variation of thalamus, putamen, precentral gyrus, frontal, 
parietal, and occipital lobes, and the cerebellum, and repetitive, rigid and stereotyped behaviors and abnormal 
sensory behaviors in autism individuals.

Limitations: Only 55.9% of the participants with autism had complete questionnaire data on continuous parent‑
reported symptom measures.
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Background
Autism spectrum disorder (henceforth autism) is an early 
onset neurodevelopmental condition characterized by 
core deficits in social interaction and communication, 
along with restrictive interests and behavior, and 
sensory abnormalities [1]. Magnetic resonance imaging 
(MRI) studies have increased our understanding of the 
neuroanatomical underpinnings of autism and show 
that autism is associated, at the group level, with brain 
structural changes [2]. However, many results are not 
robust across different studies. For example, two studies 
using the same large-scale open access Autism Brain 
Imaging Data Exchange (ABIDE) dataset [3] came to 
different conclusions with regard to the volume of the 
pallidum [4, 5]. Also, across whole brain approaches 
investigating cortical (i.e., cortical thickness and surface 
area) and subcortical (i.e., volume) features have been 
inconsistent; two large-scale pooled estimate analytical 
studies observed diverging results of cortical changes in 
autism [6, 7]. Similarly, autism studies quantifying voxel-
wise gray matter (GM) density also found divergent 
results of GM differences between autism diagnosed 
and control individuals; for instance, meta-analyses 
reported diverse changes of GM morphometry in autistic 
individuals on average, reporting either increased or 
decreased density of right inferior temporal gyrus in 
autism [8, 9]. Even when taking age into account, studies 
still observed different structural brain alterations in 
children and adolescents with autism [10, 11].

A commonality to all these studies is their reliance 
on mass-univariate statistics. This approach identifies 
alterations in isolated regions or voxels but ignores 
possible relationships between them. The brain is 
a complex system of interconnected networks, and 
research into the neural basis of autism has moved 
away from focusing on local abnormalities into 
conceptualizing autism as a disorder of alterations in 
structural and functional brain connectivity [12]. This 
implies that structural brain alterations in autism likely 
reflect the combined influence of several regions and are 
not confined to one specific region [13, 14]. The present 
paper aims to advance prior work on brain structural 
neural correlates of autism in two ways. First, we aim 
to move away from the standard univariate approach 

and incorporate an alternative that adheres more 
closely to the hypothesis of autism as a disconnection 
syndrome [13], thus providing greater sensitivity for 
between-group effects. For this purpose, we identify 
inter-regional sources of structural covariation 
using independent component analysis (ICA) [15], a 
data-driven unsupervised approach that allows the 
identification of interconnected brain regions across the 
whole brain. It has previously been applied successfully 
to identify covariance of brain morphometry in patients 
with psychiatric disorders [16–18]. Second, we move 
beyond the categorical autism case–control comparison 
towards exploring associations between brain structure 
and symptom dimensions or profiles of autism. Although 
former studies have used univariate approaches to 
explore the relationship between brain substrates 
and clinical phenotypes [6, 19], such associations are 
potentially the consequence of integrated effects across 
multiple symptoms dimensions and brain regions, 
rather than simple associations between a specific brain 
region and a specific symptom dimension. To study such 
multidimensional associations multivariate methods are 
effective [20, 21] and here we achieve this integration 
using Canonical Correlation Analysis (CCA) [22].

In summary, we investigate alterations in GM 
morphometric covariations in a deeply phenotyped large 
European autism case–control sample [23, 24] that allows 
us to improve our understanding of correlated structural 
brain alterations in autism. Subsequently, we focus on 
the covariation between the identified structural features 
and symptom behavior profiles among individuals with 
autism.

Methods
Participants
The participants were selected from the first wave of the 
European Autism Interventions—A Multicentre Study for 
Developing New Medications (EU-AIMS) Longitudinal 
European Autism Project (LEAP) dataset, which is 
a large multicenter study that aims to identify and 
validate biomarkers for autism [24]. In total, six centers 
are involved: Institute of Psychiatry, Psychology and 
Neuroscience, King’s College London, United Kingdom; 
Autism Research Centre, University of Cambridge, 

Conclusions: Covaried areas associated with autism diagnosis and/or symptoms are scattered across the whole 
brain and include the limbic system, basal ganglia, thalamus, cerebellum, precentral gyrus, and parts of the frontal, 
parietal, and occipital lobes. Some of these areas potentially subserve social‑communicative behavior, whereas others 
may underpin sensory processing and integration, and motor behavior.

Keywords: Autism, Magnetic resonance imaging, Voxel‑based morphometry, Independent component analysis, 
Canonical correlation analysis
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United Kingdom; Radboud University Medical Centre, 
Nijmegen, the Netherlands; University Medical Centre 
Utrecht, the Netherlands; Central Institute of Mental 
Health, Mannheim, Germany; and University Campus 
Bio-Medico, Rome, Italy. Each participant underwent 
clinical, cognitive, and MRI assessment. Autism 
diagnoses were confirmed by clinicians according to 
the Diagnostic and Statistical Manual-IV (DSM-IV), 
International Statistical Classification of Diseases and 
Related Health Problems 10th Revision (ICD-10), 
or DSM-5. The study was approved by local ethical 
committees in each participating center, and written 
informed consent was provided by all participants and/or 
their legal guardians (for those < 18 years old). For further 
details on experimental design and clinical assessments, 
see [23, 24].

In the present study, we selected participants 
with available structural MRI data. All images were 
inspected visually and participants were excluded in 
cases of brain injury or structural abnormalities (e.g., 
enlarged ventricles or cysts), excessive head motion, 
or preprocessing failure (n = 29). We excluded the 
participants from the Rome site due to low sample size 
(n = 1). We also excluded participants without full-
scale intelligence quotient (FSIQ) data in the further 
statistical analyses (n = 5). This resulted in a sample of 
599 participants from 5 sites, including 347 individuals 
with autism and 252 typically developing (TD) controls. 
Demographic and clinical information is shown in 
Table 1.

Clinical measures
We used the Autism Diagnostic Interview-Revised 
(ADI) [25] and the Autism Diagnostic Observational 
Schedule 2 (ADOS) [26] to quantify past (ever and 
previous 4-to-5  years) and current autism symptoms of 
the social interaction, communication, and restricted 
repetitive behaviors (RRB) domains. We used T-scores 
(age- and sex-adjusted) of the Social Responsiveness 
Scale 2nd Edition (SRS) [27] in the autism group to assess 
severity of autistic traits/symptoms and the Repetitive 
Behavior Scale-Revised (RBS) [28] to measure repetitive 
and rigid behaviors associated with autism. Moreover, 
sensory processing abnormalities of autism were assessed 
with the Short Sensory Profile (SSP) [29]. To examine 
associations between clinical features in autism and 
brain measures, we created two sets of clinical measures: 
(1) the subscale scores of ADI-R and ADOS, both 
instruments were rated by qualified examiners, and (2) 
the total scores of SRS, RBS, and SSP, we included parent-
rated reports only and limited the analyses to within the 
autism group. Further, concerning the potential effect 
of comorbidity with Attention Deficit Hyperactivity 

Disorder (ADHD), we included comorbidity with ADHD 
as an additional covariate in analyses. ADHD symptoms 
were assessed with the ADHD DSM-5 rating scale that 
includes symptom scales of inattention and hyperactivity/
impulsivity symptoms. The ADHD DSM-5 rating scale 
was based on either parent-report or self-report scores; 
self-report scores were only used when parent-reports 
were unavailable. The categorical output of the ADHD 
rating scale was used in this study. The summary for each 
of these clinical measures can be found in Table 1.

MRI data acquisition
All participants were scanned on 3  T MRI scanners 
(University of Cambridge: Siemens Verio; King’s 
College London: GE Medical Systems Discovery MR 
750; Mannheim University: Siemens TimTrio; Radboud 
University: Siemens Skyra; Rome University: GE Medical 
Systems Sigma HDxTt; Utrecht University: Philips 
Medical Systems Achieva/Ingenia CX). High-resolution 
structural T1-weighted images were acquired with full 
head coverage, at 1.2  mm thickness with 1.1 × 1.1  mm 
in-plane resolution.For all other scanning parameters, 
please see Additional file 1: Subsection 1.

GM density estimation
Voxel-based morphometry (VBM) is a spatially unbiased 
whole-brain approach that extracts voxel-wise GM 
density (the amount of GM at a voxel) estimations. We 
performed VBM analyses using the CAT12 toolbox 
[30] in SPM12 (Wellcome Department of Imaging 
Neuroscience, London, UK). T1-weighted images 
were automatically segmented into GM, white matter, 
and cerebrospinal fluid and affine registered to the 
MNI template to improve segmentation. All resulting 
segmented GM maps were then used to generate a 
study-specific template and registered to MNI space via 
a high-dimensional, nonlinear diffeomorphic registration 
algorithm (DARTEL) [31]. A Jacobian modulation step 
was included using the flow fields to preserve voxel-
wise information on local tissue volume. Images were 
smoothed with a 4  mm full-width half-max (FWHM) 
isotropic Gaussian kernel.

A full quality control report was generated by the 
CAT SPM pipeline for each participant that included 
visualizations of the segmentation, which were evaluated 
visually, and quantitative quality measures including 
mean correlation from sample homogeneity module 
and weighted overall image quality ratings that were 
additionally used to detect and exclude images of 
insufficient quality for inclusion in analysis. We visually 
checked the images with the mean correlation smaller 
than three standard deviations from the sample mean. 
Accordingly, 5 participants required visual inspection 
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after preprocessing, whereas none of them were observed 
obvious artifacts, and they were consequently included in 
the final analyses.

Structural ICA decomposition
All participants’ VBM data were simultaneously 
decomposed into 100 spatially independent sources 
of spatial variation using MELODIC-ICA [15]. Such 
ICA decomposition provides, at each independent 
component, a brain map reflecting a pattern of 
GM density covariation across participants, and a 
participant’s loading vector reflecting the contribution 
of each participant to each component. Higher model 

orders (i.e., number of components) tend to extract 
spatially sparser maps, and hence participant loading 
vectors variance would be explained by smaller subsets 
of participants. Therefore, 100 components were 
chosen to capture as much variation as possible while 
remaining statistically powered. However, the choice 
of model order is heuristic, we thereby examined 
the dependence on model order using different 
dimensionalities; more precisely, in addition to the 
100 dimensional factorization, we also considered 
an automatic dimension estimation approach as 
implemented in MELODIC-ICA and a 50 dimensional 
independent component factorization.

Table 1 Participant characteristics

TD, typically developing; SD, standard deviation; FSIQ, full-scale intelligence quotient; ADHD, Attention Deficit Hyperactivity Disorder; ADI, Autism Diagnostic 
Interview-Revised; RRB, restricted, repetitive behaviors; ADOS, Autism Diagnostic Observational Schedule 2; SRS, Social Responsiveness Scale 2nd Edition; RBS, 
Repetitive Behavior Scale-Revised; SSP, Short Sensory Profile
a Statistical differences were assessed by two-sample t test
b In Schedule A, B, and C (FSIQ ≥ 75), there are 302 participants with autism and 229 participants with TD. Schedule D (FSIQ < 75) comprised 45 participants with 
autism and 23 TD individuals
c Sex difference was examined by the chi-square test
d ADHD rating scores were available for 500 participants, including 299 individuals with autism and 201 TD individuals
e ADI scores were available for 332 participants
f ADOS scores were available for 339 participants. We considered calibrated severity scores
g Parent report SRS scores were available for 284 participants with autism and 135 TD individuals
h RBS scores were available for 277 participants with autism and 133 TD individuals
i SSP scores were available for 201 participants with autism and 115 TD individuals
g,h,i In all questionnaires, the scores of the autism group only were used in our study, and they are all parent-rated

Demographic Autism, n = 347 TD, n = 252 t/χ2 p value

Mean SD Mean SD

Age,  yearsa 16.79 5.56 16.92 5.71 − 0.270 0.788

FSIQa,b 99.40 18.94 104.88 18.26 − 3.549 p < 0.001

 FSIQ ≥ 75 104.29 14.95 109.02 13.07 − 3.883 p < 0.001

 FSIQ < 75 66.61 5.44 63.69 9.20 1.399 0.172

n % n %

Sex, male/femalec 253/94 72.9/27.1 163/89 64.7/35.3 4.658 0.031

ADHD rating  scaled, with/
without ADHD

139/160 46.5/53.5 21/180 10.4/89.6 71.750 p < 0.001

Symptom profiles Mean SD Mean SD

ADIe

 Social interaction 16.80 6.66

 Communication 13.50 5.62

 RRB 4.32 2.67

ADOSf

 Social affect 6.04 2.59

 RRB 4.73 2.78

SRS T‑scoreg 70.59 12.06 47.24 8.79

RBSh 15.76 13.42 2.20 8.28

SSPi 138.62 27.28 175.97 16.18
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Statistical approach
For completeness we first performed a standard mass-
univariate statistical analyses directly on the GM 
densities. To that end we used a generalized linear model 
(GLM) to detect group differences (autism vs. TD) on 
GM densities using the FMRIB Software Library v6.0 
(FSL) [33]. Participants’ VBM maps were considered 
as the dependent variable and diagnostic group as the 
independent factor, with age, sex, FSIQ, and scan site as 
covariates. Significance was assessed using permutation 
testing (5000 permutations) and correction for multiple 
comparisons was achieved using Threshold-Free Cluster 
Enhancement (TFCE, two-tailed, threshold at p < 0.05) 
[34, 35].

Next, we considered the results of the ICA factorization 
of the VBM data. A GLM was used to examine differences 
between autistic and TD individuals, by using each 
participant’s loading to each component as a dependent 
variable, diagnostic group as independent variable, and 
age, sex, FSIQ, and scan site as regressors. To avoid 
the results of case–control differences being biased 
by IQ, we repeated the same procedure by excluding 
participants in Schedule D (FSIQ < 75, more details see 
Additional file 1: Subsection 2). Considering that autism 
is highly comorbid with ADHD [36], we also controlled 
for comorbidity with ADHD by adding a dummy-
coded variable (with/without ADHD) to the original 
GLM analyses (autism vs. TD) in the case–control ICA 
analysis. Additionally, we also conducted analyses that 
included a dimensional score (instead of categorical 
code) of the two ADHD subscales as an additional 
covariate in the group effect analyses (see Additional 
file 1: Subsection 3). Furthermore, we separately checked 
the effects of age squared, age-by-group, age squared-
by-group, sex-by-group interactions, anxiety, depression 
comorbidity, medication use and image quality on case–
control differences of structural covariance. The results 
can be found in Additional file 1: Subsection 3. Multiple 
comparison correction was implemented using false 
discovery rate (FDR) (p < 0.05) [37].

We also explored independently the relationships 
between each estimated brain component and subscales 
of ADI and ADOS, SRS, RBS, and SSP in the autism 
group using GLM analyses and again correction for 
multiple comparisons was implemented with the FDR 
method (p < 0.05). Then, to simultaneously explore the 
relationship between all the brain structural phenotypes 
estimated through ICA and all symptom phenotypes 
in the autism group, we used CCA. In the considered 
scenario, CCA is able simultaneously to learn linear 
projections (via canonical coefficients) of the brain 
structural sources and the behavioral measures that 
maximize the correlation between them at the participant 

level. Canonical variates are generated independently for 
the brain and the behavioral datasets according to the 
product of the canonical coefficients (learned through 
CCA) and the original datasets. We referred to each pair 
of canonical variates as CCA mode [38]. The canonical 
coefficients separately represent weights for each brain 
variable and each symptom measure. For interpretation 
of the contribution of each independent source and 
each clinical measure to the CCA mode, their canonical 
coefficients were corrected as noted in [39]. In this work 
we focused on the first canonical mode since it provides 
the strongest associations and we denoted it as the 
main CCA mode. Furthermore, for each CCA analysis 
the statistical significance of the main CCA mode was 
determined by permutation testing (10,000 permutations, 
Bonferroni corrected p < 0.05/number of CCA modes). 
Here, we performed two separate CCA analyses to link 
the independent components participants’ contributions 
to subsets of behavioral measures; in the first CCA 
analyses (CCA 1) we included the subscales of ADI and 
ADOS as clinical measures and in the second (CCA 2) 
we used total scores of SRS, RBS, and SSP. The reliability 
of the CCA results presented as well as its dependence 
on the number of participants were tested using a leave-
one-out cross-validation approach (Additional file  1: 
Subsection 4).

Results
Mass‑univariate statistics
The standard mass-univariate GLM analysis of the 
VBM data comparing cases and controls did not show 
significant group differences for voxel-wise GM volumes 
after multiple comparison correction. We provide the 
uncorrected statistical results (p < 0.05) in Additional 
file 1: Subsection 5.

Group effect on ICA decomposition
The structural data ICA decomposition provided a 
set of 100 independent spatial sources, each of which 
is connected to a vector that depicts the degree of 
each participant’s contribution to the corresponding 
components. For clarity, we further refer to these vectors 
as the participant loadings. Post-hoc GLM analyses 
of these participant loadings showed case–control 
differences at nine independent components (ICs) 
(p < 0.05, i.e., IC10, IC13, IC14, IC15, IC23, IC28, IC31, 
IC48, and IC 99, see Additional file  1: Subsection  6). 
Of these, two components, IC10 ( β = −0.147 , 
p = 8.850 × 10–5, effect size [Cohen’s d] d = − 0.358) 
and IC14 ( β = −0.132 , p = 5.450 × 10–4, d = − 0.321), 
survived multiple comparison correction (FDR corrected, 
p < 8.072 × 10–4). These results were not driven by age, 
sex, or scan site.
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In Fig.  1, we present summary images reflecting the 
brain areas involved in the structural variances occurring 
at these two components. The top row of Fig.  1 shows 
that IC10 primarily relates to structural variation in the 
bilateral insula, inferior frontal gyrus (IFG), orbitofrontal 
cortex (OFC), and caudate nuclei. Among these brain 
regions, the bilateral caudate exhibits alterations in the 
opposite direction to the others. Given the negative beta 
coefficient obtained from the GLM analysis between 
participant loadings at IC10 and the diagnosis group 
labels, individuals with autism demonstrate increased 
GM densities in the bilateral caudate and decreased 
densities in the bilateral insula, IFG, and OFC. The 
bottom row of Fig.  1 shows that IC14 mainly involves 
variations in the bilateral amygdala, hippocampus, and 
parahippocampal gyrus (PHG). Similarly, according to 
the sign of the beta values obtained through the GLM, 
the autism group shows decreased densities in the areas 
involved in IC14.

The robustness of the ICA results to the model order 
choice was evaluated by considering, in addition to the 
original 100-dimensional factorization, an automatic 
dimensionality estimation procedure resulting in a 
91-dimensional factorization, and a 50-dimensional 
factorization. We observed that the main components 
reported (IC10 and IC14) are highly reproducible 

independent of the model order choice. For details, see 
Additional file 1: Subsection 7.

To validate the ICA results not being biased by low IQ 
participants, an additional validation was performed by 
taking FSIQ into account to exclude the participants in 
Schedule D from the ICA factorization. This showed that 
a unique IC, corresponding to the original IC10, survived 
FDR correction (see Additional file  1: Subsection  3). 
Further, the effect of comorbidity with ADHD on brain 
structural variations was determined using data from 500 
participants (for detailed demographic information, see 
Additional file 1: Subsection 3). This analysis showed that 
IC14 remained significantly associated with the autism 
group (FDR corrected, p = 9.669 × 10–4). However, IC10 
was no longer associated with autism (p = 0.004).

Further, post-hoc GLM analyses of the relationships 
between brain ICs and symptom ratings did not 
provide any significant associations (Additional file  1: 
Subsection 8).

Relating gray matter spatial variation patterns 
to symptoms profiles
As a final step, we applied CCA to examine the 
associations between the 100 components and the two 
sets of clinical measures among the autism cases only. The 
CCA 1 (linking ADI and ADOS subscale scores to brain 

Fig. 1 The components showed significant case–control differences. The component maps were thresholded at 3 < |Z| < 5 . IC10, component 
number 10; IC14, component number 14
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measures), involved 325 autism participants and showed 
a Bonferroni corrected (p = 0.05/5 = 0.010) significant 
relationship (Fig. 2a,c, r = 0.701, permutation p = 0.008). 
In this main CCA mode, IC16, IC61, IC89, and IC14 
were the highest contributors to the correlation with 
autism symptoms, and the ADOS RRB subscale loaded 
most on the association with the brain measures (Fig. 3a, 
b). Among the four components, IC16 mainly involved 
density variations in bilateral thalamus and putamen 
(canonical weight: 0.447), IC61 in right lateral occipital 
and left superior parietal lobe (canonical weight: − 0.366), 
and IC89 in the right precentral gyrus (canonical weight: 
− 0.333). For details, see Additional file 1: Subsection 9. 
Note that IC14 is among the components previously 
reported showing linear significant case–control group 
effects. The regions involved in IC14 were mentioned 
above (canonical weight: − 0.312). Since higher scores 
of the ADI and ADOS reflect more severe autism 

symptoms, positive values of IC16 suggest that higher 
loading on this component is related to more severe 
symptoms in autism, and negative values of IC61, IC89, 
and IC14 meant that lower loadings on these three ICs 
are associated with more severe symptoms. In Fig.  2a, 
participants were color coded according to their ADOS-
RRB scores to illustrate how the ADOS-RRB score drives 
the canonical correlation.

In CCA 2 we linked SRS, RBS, and SSP scores to the 
brain measures of 194 individuals with autism, which is 
55.9% of all participants with autism (lower number due 
to missing questionnaire data). We found a Bonferroni 
corrected (p = 0.05/3 = 0.017) significant relationship 
(Fig. 2b, r = 0.840, permutation p = 0.002, Fig. 2d). In this 
main CCA mode, IC82, IC99, and IC100 were the highest 
contributors to the correlation with behavior profiles, and 
SSP score loaded most on the association with the brain 
measures in the autism group (Fig.  3c, d). IC82 mainly 

Fig. 2 The first row shows the scatterplot of the main CCA mode of the brain structural covariations versus the symptom profiles for CCA 1 and CCA 

2 respectively. One dot per participant in each graph is coded with gradient colors according to the scores of ADOS RRB (a) and SSP (b), respectively. 
The second row shows the histograms of the null distribution of correlation values obtained from the main CCA mode at 10,000 random 
participants’ permutations in the autism sample with ADI and ADOS scores (c), and with SRS, RBS, and SSP scores (d). The true r‑value is marked by 
a red cross. ADI, Autism Diagnostic Interview‑Revised; ADOS, Autism Diagnostic Observational Schedule 2; SRS, Social Responsiveness Scale 2nd 
Edition; RBS, Repetitive Behavior Scale‑Revised; SSP, Short Sensory Profile; RRB, restricted and repetitive behaviors



Page 8 of 13Mei et al. Molecular Autism           (2020) 11:86 

involved variations in the bilateral cerebellum (canonical 
weight: 0.414), IC99 in the left lateral occipital and 
parietal lobe, and bilateral precentral gyrus (canonical 
weight: 0.277), and IC100 in the left inferior frontal gyrus 
and right middle frontal lobe (canonical weight: 0.262). 
For details, see Additional file 1: Subsection 9. Similarly, 
lower loadings on these three ICs were related to more 
severe symptoms. In Fig. 2b, each participant was color 
coded according to their SSP score, and it shows how SSP 
score drives the correlation. In this case, both IC10 and 
IC14 ranked outside the top 20 of the 100 components, 
suggesting that these two components with significant 
case–control difference have no strong contribution to 
the CCA 2 correlation. However, for completeness, direct 

interpretation (referring to uncorrected coefficients) 
of the CCA 2 weights ranks IC14 as the third strongest 
contributor to this canonical correlation (Additional 
file 1: Subsection 10).

The CCA robustness analyses indicated that the 
main CCA modes of both CCA analyses were reliably 
estimated in a leave-one-subject out setting (Additional 
file  1: Subsection  4). In CCA 1, the weights of the main 
CCA mode of each leave-one-out analysis correlated 
on average above 0.94 with the weights of original 
main CCA mode in brain loadings and above 0.95 in 
behavior phenotypes when the sample was bigger than 
122 participants. In CCA 2, the weights of the main CCA 
mode related on average above 0.92 in brain loadings 

Fig. 3 The top row shows the corrected canonical coefficients (weights) of the main CCA mode for the CCA 1 analyses (ADI&ADOS), and the bottom 
row for the CCA 2 analyses (SRS&RBS&SSP). a, c display the degree that each brain component contributed to the main CCA mode in each analysis. 
The two components with significant group effects are displayed in red. b, d display the degree that each symptom profile contributes to each 
analysis. CCA, canonical correlation analysis; ADI, Autism Diagnostic Interview‑Revised; ADOS, Autism Diagnostic Observational Schedule 2; SRS, 
Social Responsiveness Scale 2nd Edition; RBS, Repetitive Behavior Scale‑Revised; SSP, Short Sensory Profile
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and above 0.96 in behavior profiles when the sample 
was bigger than 111 participants. Both CCA analyses 
are no reproducible for sample sizes smaller than 
(approximately) 100 participants.

Discussion
The present study used a reliable approach to quantify 
inter-individual differences in GM morphometry 
covariations in a deeply phenotyped large sample of 
individuals with and without autism. The standard, 
univariate VBM analysis did not show significant 
case–control differences. We then utilized an ICA 
decomposition of all participants GM density images, 
and similarly performed a case–control post-hoc 
statistical analyses. This analysis showed that autism 
was significantly associated with alterations in two 
independent sources of GM density covariations. These 
findings corroborated our hypothesis that alterations 
in brain morphometry in autism are associated with 
the combined influence of several regions rather than 
with a single region. In a following step, we applied 
CCA to explore multivariate associations between 
sets of continuous measures of core symptoms and 
sets of ICA-derived morphometry measures within 
the autism group, and were able to identify significant 
relationships between brain components and symptom 
profiles. Notably, one of the components which showed 
significant case–control differences was also among the 
highest loading components in the CCA.

We found nonsignificant case–control difference in 
univariate analysis in current study, which is inconsistent 
with previous studies (e.g., [8, 9]). In light of the 
substantial biological heterogeneity among autistic 
individuals, it is expected that findings differ across 
datasets, especially those of smaller size. Specifically, 
the current study included the individuals with a relative 
wide age and IQ range, and did not exclude co-occurring 
psychiatric symptoms. Additionally, integrating the 
findings from multivariate analyses in our study, the 
absence of diagnostic differences at single region/voxel 
underscores the detection sensitivity of group effect of 
a multivariate approach which evidently verified our 
hypothesis.

Our findings showed two covarying sets of brain 
areas that structurally differed between cases and 
controls. While one source of GM density covariation, 
IC10, mainly related to the bilateral insula, IFG, OFG, 
and caudate, another source, IC14, primarily involved 
the bilateral amygdala, hippocampus, and PHG. The 
brain regions within each component are anatomically 
clustered and symmetrical, which indicates that the 
independent structural covariation alteration in the GM 
of individuals with autism is concentrated in nearby 

brain areas. This is in line with a previous study that 
used a similar approach [40]. It is further in line with 
organizing principles of the brain that regions tend to be 
more interconnected when they are located close to each 
other [41, 42]. However, when we compared the regions 
loading on the two components, the covarying regions of 
each component distribute in different brain locations. 
This suggests that neuroanatomic alterations underlying 
autism are more widely distributed at the whole brain 
level. It is of note that, when accounting for ADHD 
comorbidity, IC14 remained significant but IC10 did not. 
This suggests that IC14 is more specifically related to 
autism associated structural variations, even after linearly 
accounting for ADHD effects, while IC10 might reflect 
variations associated with both autism and ADHD.

The brain regions with high loadings on either of these 
two components, i.e., insula, amygdala, hippocampus and 
PHG have lower densities in autism and have earlier been 
associated with autism [9, 43]. The opposite direction of 
the alteration of the caudate nucleus in autism has also 
previously been found [44]. This is not the case for the 
IFG and OFG, which showed lower densities in autism 
in our study, where prior studies found mixed results 
[45, 46]. Importantly, the brain regions identified by our 
analyses have earlier been implicated in the neurobiology 
and/or neurocognition of autism. In IC10, structural 
and/or functional alterations of the insula, IFG, and 
OFC have been associated with social and non-social 
cognitive impairments in autism [46–49]. A meta-
analysis reported abnormal functional activations of 
the insula, IFG, and OFG during social cognition tasks 
in autism [50]. Additionally, variance of the caudate 
nucleus volume was found to correlate with the severity 
of RRB symptoms in autism [44]. Together with deviant 
structural and functional connectivity between frontal 
cortical areas and striatum in autism [47, 51, 52], 
structural covariation in striatum and frontal areas may 
underlie atypical functional fronto-striatal connectivity, 
and this has been associated with repetitive behavior and 
executive functioning impairments in autism [3, 45]. In 
the present study, the density of caudate nuclei increase 
simultaneously with densities decreasing on other areas 
in autism, which fits with the results of a few functional 
studies that indicate inverse functional changes of 
these areas [53]. Particularly, the special pattern of GM 
densities changes in frontal and striatal areas might serve 
an important role in autism-related symptoms.

In IC14, we found decreased densities of amygdala 
and hippocampus, where the structural alterations 
have previously been related to social deficits in 
autism [6, 54]. The amygdala, hippocampus, and 
PHG subserve cognitive and emotional functions that 
were found abnormal in individuals with autism [50, 
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55, 56]. In addition to being involved in emotion and 
face processing, the three areas have been proposed 
as structures critical for working memory in autism 
[57]. Furthermore, these cognitive domains exert 
bidirectional effects on each other, with atypical social-
emotional processing influencing memory performance 
in individuals with autism, and memory being involved 
in complex information processing and executive 
functioning, which in turn affects social cognition [57, 
58]. In sum, given the potential functional interactions 
between these three brain areas, the structural 
covariance alterations of the amygdala, hippocampus, 
and PHG found in our study, may underlie or contribute 
to abnormal functional connections of these areas, and 
thus underlie poor performance on social cognition 
and memory tasks in individuals with autism.

Our multivariate correlation analyses moved from 
the case–control comparison to the use of continuous 
symptoms among individuals with autism and 
identified two prominent relationships between all 
structural brain covariances and symptoms in autism. 
Three of the four brain components that ranked top 
in this analysis did not show case–control differences, 
while there was one component (IC14) that differed 
between cases and controls and also significantly 
correlated with the severity of autism symptoms 
assessed by ADI and ADOS. The brain areas loading 
high on the brain components identified in the CCA 
are somewhat different from those implicated in the 
case–control analyses. These former brain areas are 
the thalamus, putamen, precentral gyrus, and parietal 
and occipital lobes in CCA 1, and the cerebellum, 
frontal lobe, and again precentral gyrus, and parietal 
and occipital lobes in CCA 2. These are foremost areas 
of the brain implicated in the processing and higher 
order integration of sensory information and motor 
functions. This makes sense since repetitive, rigid and 
stereotyped behaviors and abnormal sensory behaviors 
seem to drive the brain-behavior associations much 
more than the measures on social-communication 
symptoms. Note that variance within the different 
autism symptom domains (social-communication, 
repetitive behaviors and sensory abnormalities) was 
similar and cannot explain the differential symptom-
brain associations.

Overall, the results of our multivariate analyses on 
case–control differences and on continuous measures of 
symptom severity among those with autism demonstrate 
the complexity of the brain morphometry correlates of 
autism. Brain areas involved are scattered across the 
whole brain and include the limbic system, basal ganglia, 
thalamus, cerebellum, precentral (motor) gyrus, and 
parts of the frontal, parietal, and occipital lobes.

Strengths and limitations
The strengths of our study are the use of a large deeply 
phenotyped sample, bottom-up data-driven analyses, 
a multivariate approach for examining brain-symptom 
associations, and a large set of continuous measures of 
core autism symptoms. There are several limitations 
in our study. First, only 55.9% of the autism group had 
complete questionnaire data on continuous parent-
reported symptom measures, which may have lowered 
statistical power for this analysis. Second, due to 
the clinical characteristic of autism, the participants 
showed significant differences in the proportion of sex 
distribution. Despite this we regressed out the sex effect 
in the group difference analyses, future studies may 
consider balancing the sex distributions in case and 
control groups; however this may be difficult to achieve. 
Third, albeit we ran a series of sensitivity and control 
analyses, the effect of other potential sources of variance, 
such as the complex effects of medication use that may 
influence our findings.

Conclusions
We demonstrate brain morphometry differences 
between individuals with autism and typical controls in 
the inter-regional covariation of the insula, frontal area, 
caudate, amygdala, hippocampus, and PHG. Further, we 
highlight associations between covariation in density 
of the thalamus, putamen, precentral gyrus, frontal, 
parietal, and occipital lobes, and the cerebellum, and 
core autism symptoms, in particular repetitive behaviors 
and abnormal sensory behavior. Future studies may link 
our morphometry findings with data on brain function 
obtained from cognitive tests and/or functional and 
resting-state MRI, and with genomics data.
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