74 research outputs found

    Waning magmatic activity along the Southern Explorer Ridge revealed through fault restoration of rift topography

    Get PDF
    International audienceWe combine high-resolution bathymetry acquired using the Autonomous Underwater Vehicle ABE with digital seafloor imagery collected using the remotely operated vehicle ROPOS across the axial valley of the Southern Explorer Ridge (SER) to infer the recent volcanic and tectonic processes. The SER is an intermediate spreading ridge located in the northeast Pacific. It hosts the Magic Mountain hydrothermal vent. We reconstruct the unfaulted seafloor terrain at SER based on calculations of the vertical displacement field and fault parameters. The vertical changes between the initial and the restored topographies reflect the integrated effects of volcanism and tectonism on relief-forming processes over the last 11,000-14,000 years. The restored topography indicates that the axial morphology evolved from a smooth constructional dome >500 m in diameter, to a fault-bounded graben, ~500 m wide and 30-70 m deep. This evolution has been accompanied by changes in eruptive rate, with deposition of voluminous lobate and sheet flows when the SER had a domed morphology, and limited-extent low-effusion rate pillow eruptions during graben development. Most of the faults shaping the present axial valley postdate the construction of the dome. Our study supports a model of cyclic volcanism at the SER with periods of effusive eruptions flooding the axial rift, centered on the broad plateau at the summit of the ridge, followed by a decrease in eruptive activity and a subsequent dominance of tectonic processes, with minor low-effusion rate eruptions confined to the axial graben. The asymmetric shape of the axial graben supports an increasing role of extensional processes, with a component of simple shear in the spreading processes

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Recent volcanic accretion at 9 degrees N-10 degrees N East Pacific Rise as resolved by combined geochemical and geological observations

    Get PDF
    The ridge crest at 9°N-10°N East Pacific Rise (EPR) is dominated by overlapping lava flows that have overflowed the axial summit trough and flowed off-axis, forming a shingle-patterned terrain up to ∼2-4 km on either side of the axial summit trough. In this study, we employ 230Th- 226Ra dating methods, in conjunction with geochemistry and seafloor geological observations, in an effort to discern the stratigraphic relationships between adjacent flows. We measured major and trace elements and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, and 238U-230Th- 226Ra for lava glass samples collected from several flow units up to ∼2 km away from the axial summit trough on the ridge crest at 9°50′N EPR. Statistical analysis of the 238U- 230Th-226Ra data indicates that all but one measured sample from these flows cannot be resolved from the zero-age population; thus, we cannot confidently assign model ages to samples for discerning stratigraphic relationships among flows. However, because groups of samples can be distinguished based on similarities in geochemical compositions, particularly incompatible element abundances with high precision-normalized variability such as U and Th, and because the range of compositions is much greater than that represented by samples from the 1991-1992 and 2005-2006 eruptions, we suggest that the dive samples represent 6-10 eruptive units despite indistinguishable model ages. Geochemical variability between individual flows with similar ages requires relatively rapid changes in parental melt composition over the past ∼2 ka, and this likely reflects variations in the relative mixing proportions of depleted and enriched melts derived from a heterogeneous mantle source. ©2013. American Geophysical Union. All Rights Reserved

    Affleurements des roches profondes de la croûte océanique et du manteau sur le mur sud de la fracture Kane (Atlantique central) : observations par submersible = Deep layers of mantle and oceanic crust exposed along the southern wall of the Kane Fracture Zone : submersible observations

    No full text
    The aim of the 20 Nautile dives of the recent Kanaut cruise was the study of the Kane Fracture Zone from its intersection with the Mid-Atlantic Ridge up to 80 km to the west. The dives have been conducted along four massifs located along the southern wall of the fracture valley. The flanks of the massifs consist of slightly tilted peridotites, gabbros and basalts, which have been exposed along normal and strike-slip major faults. No dike complex similar to that observed along the ZF Vema was observed. The observed sections show pervasive cataclastic deformation and greenschist-facies metamorphic overprin

    Observation of sections of oceanic crust and mantle cropping out on the southern wall of Kane FZ (N. Atlantic)

    Get PDF
    The objective of the 20 Nautile dives of the recent Kanaut cruise was to study the southern wall of the Kane Fracture Zone from its eastern intersection with the Mid-Atlantic Ridge (MAR) to 5 Myr in age. The geological mapping shows four successive massifs, wrench faulted and slightly tilted. The transform-facing walls of these massifs exhibit outcrops of fresh and serpentinized peridotites, gabbros and basalts. The entire crustal exposure is cataclased and metamorphosed to greenschist facies

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure
    corecore