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[1] We combine high-resolution bathymetry acquired using the Autonomous Underwater Vehicle ABE with
digital seafloor imagery collected using the remotely operated vehicle ROPOS across the axial valley of the
Southern Explorer Ridge (SER) to infer the recent volcanic and tectonic processes. The SER is an interme-
diate spreading ridge located in the northeast Pacific. It hosts the Magic Mountain hydrothermal vent. We
reconstruct the unfaulted seafloor terrain at SER based on calculations of the vertical displacement field and
fault parameters. The vertical changes between the initial and the restored topographies reflect the integrated
effects of volcanism and tectonism on relief-forming processes over the last 11,000–14,000 years. The re-
stored topography indicates that the axial morphology evolved from a smooth constructional dome >500 m
in diameter, to a fault-bounded graben, ~500 m wide and 30–70 m deep. This evolution has been accom-
panied by changes in eruptive rate, with deposition of voluminous lobate and sheet flows when the SER
had a domed morphology, and limited-extent low-effusion rate pillow eruptions during graben develop-
ment. Most of the faults shaping the present axial valley postdate the construction of the dome. Our study
supports a model of cyclic volcanism at the SER with periods of effusive eruptions flooding the axial rift,
centered on the broad plateau at the summit of the ridge, followed by a decrease in eruptive activity and a
subsequent dominance of tectonic processes, with minor low-effusion rate eruptions confined to the axial
graben. The asymmetric shape of the axial graben supports an increasing role of extensional processes, with
a component of simple shear in the spreading processes.
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1. Introduction

[2] Remotely operated vehicles (ROVs) and auton-
omous underwater vehicles (AUVs) allow more
detailed investigations ofmid-ocean ridges processes,
as compared to previous methods such as coarser
multibeam bathymetric data acquired from ships.
These new high-resolution methods make it possible
to produce comprehensive bathymetric maps of the
seafloor at 1 m scale that highlight subtle tectonic
and volcanic features including small-throw faults,
tectonic fissures, eruptive fissures, flow fronts, and
pillow mounds. Furthermore, digital seafloor imagery
allows for these features to be identified and
assessed in terms of their dimensions and other
physical relationships. Given this information, we
can explore questions about the origin and evolu-
tion of seafloor features using the method of restor-
ing topography to its prefaulted morphology, as is
commonly done in terrestrial environments. Below
we report on a new high-resolution data set that
allows us to address questions concerning the
evolution of an intermediate-rate mid-ocean ridge
spreading center that demonstrates how volcanic
and tectonic processes have varied over time.

[3] Explorer Ridge is a ~110 km long spreading
center located in the northeast Pacific Ocean off
the west coast of Canada, and north of the Juan de
Fuca Ridge (JdFR, Figure 1). Explorer Ridge has
created the small Explorer Plate to the east and a
conjugate portion of the Pacific Plate to the west
over the past 3 ~ 4 Ma [Riddihough, 1974; Botros
and Johnson, 1988]. The southernmost ridge
segment of Explorer Ridge (Southern Explorer
Ridge, SER) was known to host a large hydrothermal
vent complex known as “Magic Mountain”, located
on the eastern shoulder of the SER spreading center
near its shallowest point (~1800 m water depth),
but the area had not been mapped in detail
[Tunnicliffe et al., 1986; Beaudoin, 2001]. In 2002,
the summit of SER (49�460N 130�160W) was inves-
tigated using the R/V Thomas G. Thompson and
underwater vehicles, as a part of the multi-
investigator project under the auspices of the NOAA
“Submarine Ring of Fire 2002” program [Embley
et al., 2002; Yoerger et al., 1997, 1999; Jakuba

et al., 2002]. Along with ship-based mapping using
the R/V Thompson’s 30 kHz EM300 multibeam
sonar system, the primary purpose of the cruise was
to carry out high-resolution mapping using the
AUVABE (Autonomous Benthic Explorer) to docu-
ment the location, extent, and regional context of
the Magic Mountain hydrothermal area. For this
survey, ABE was equipped with the SM2000 200
kHz multibeam sonar system (< 1 m pixel size)
and an Imagenex 675 kHz pencil-beam scanning
sonar (< 3 m pixel size) [Yoerger et al., 1997,
1999; Deschamps et al., 2007] and a 3-axis fluxgate
magnetometer [Tivey et al., 2002]. ABE produced a
very detailed bathymetry map of the “Magic Moun-
tain” vent area, which was then used to guide a
follow-up program using the Canadian ROV
ROPOS [Embley et al., 2002]. Details of the Magic
Mountain hydrothermal field, its geological setting,
and crustal magnetization are discussed in a separate
manuscript. The ABEmagnetic data are inconclusive
on any chronological constraints because the data are
strongly influenced from the hydrothermal activity
within the rift valley with areas of reduced magneti-
zation, which is punctuated by zones of strong mag-
netization over volcanic constructional features both
within the rift and on the flanks [Tivey et al., 2002].

[4] In this study, we combine the high-resolution
bathymetric data with digital seafloor imagery
collected during one, ~30 h long, ROPOS dive
(R665) across the axial valley and the previously
published seafloor photography [Scott et al., 1990],
to infer the recent history of volcanic and tectonic
processes at the summit of the SER. We attempt to
reconstruct the unfaulted seafloor terrain at SER
using calculations from Deschamps et al. [2007],
who determined the vertical displacement field and
fault parameters for the SER ridge crest fault popula-
tion based on a detailed analysis of the ABE high-
resolution multibeam data. To perform this terrain
restoration, we use the method of De Chabalier
and Avouac [1994] who studied the deformation of
the subaerial Fieale Volcano located in the Asal Rift.
Carbotte et al. [2003] demonstrated that this method
is valid for the analysis of submarine volcanic and
tectonic processes at mid-ocean ridges when bathy-
metric data of sufficient resolution are available.
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We then draw conclusions about the recent evolu-
tion of the volcanic and tectonic processes that
have occurred at the SER axis.

2. Geological and Petrological Setting

[5] Explorer Ridge is composed of four separate ridge
segments [Botros and Johnson, 1988; Beaudoin,
2001], from south to north, the 65 km long Southern
Explorer Ridge spreading segment, a 53 km long deep
rift called Explorer Deep that appears to curve in an
easterly overlapping spreading center arrangement
with SER, and finally, two small en echelon rifts
that step to the west (Explorer Rift) and terminate
at the Revere-Dellwood-Wilson transform [Davis

and Riddihough, 1982; Braunmiller and Nábelek,
2002]. The Explorer Ridge is bounded to the south
by the Sovanco Fracture Zone, which acts as a
complex right-lateral transform zone with the
northern end of the Juan de Fuca Ridge and forms
the southern boundary of the Explorer plate.

[6] Our study focuses on the southernmost segment
of Explorer Ridge named Southern Explorer Ridge
(SER) [Michael et al. 1989; Beaudoin, 2001]. The
SER is a single, 5–8 kmwide and 65 km long spread-
ing segment, which is bordered by flat-floored
valleys up to 7 km wide on the west and 3 km wide
on the east. These valleys are bounded by fault scarps
up to 800 m high, corresponding to the first occur-
rence of off-axis abyssal hills (Figure 1). The SER
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Figure 1. EM300 bathymetry of the Southern Explorer Segment. The black box indicates the study area where high-
resolution bathymetry was collected and visual observations were made. Contour interval is 20 m. The star shows the
position of the active Magic Mountain hydrothermal field.
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has an inflated cross-section. The other active seg-
ments of the Explorer Ridge, located further to the
northwest, are characterized by rift valleys. Seafloor
spreading started at the present location of the SER
~0.3 Ma ago following an eastward ridge jump,
according to Michael et al. [1989]. A wide axial
valley is present for the southern two-thirds of its
length, but the morphology of the valley evolves to
a series of small grabens and fissures at the latitude
of the study area, before culminating in a broad dome
with no summit graben at a depth of 1740 m (at
~49�470N) [Michael et al., 1989] (Figure 1). This
morphology suggests that the magma supply is
greatest at the summit of the ridge and diminishes
both north and south toward the segment ends
[Macdonald et al., 1984; Macdonald and Fox,
1988]. Between 49�410N and 49�450N, the axial
valley is composed of two parallel grabens, named
East and West valleys, separated by an axial volca-
nic ridge [Michael et al., 1989]. The SER has been
spreading at an intermediate-rate of 4.5 to 6 cm/yr
(full rate) for 0.3 My [e.g., Botros and Johnson,
1988; Braunmiller and Nábelek, 2002].

[7] Rock samples collected in 2002 using ROV
ROPOS are mainly pillow lavas, commonly with
a thin manganese oxide coating. These basaltic
lavas and glasses are nearly aphyric to plagioclase
porphyritic, the plagioclase constituting up to 30%
of the rock volume. They all are enriched mid-
ocean ridge basalts (E-MORB), with K2O ranging
from 0.3 to 0.7 wt % [Burkholder et al., 2003].
Normalized incompatible element patterns are light
rare earth element enriched. They have a distinct
peak in Nb-Ta, identical to E-MORB lavas in the
West Valley Segment of the northern Juan de Fuca
Ridge. Based on these analyses, Burkholder et al.
[2003] concluded that young oceanic crust at
Explorer Ridge is mainly composed of enriched
mid-ocean ridge basalts, suggesting that an enriched
mantle source has been present beneath the SER for a
lengthy period of time. Previously, Michael et al.
[1989] analyzed 19 samples collected along the
SER axis between 49.4�N and 49.9�N. They found
transitional and enriched mid-ocean ridge basalts.
At the ridge summit, between 49.7�N and 49.8�N,
they found incompatible element and isotopic
enrichment of all basalt (E-MORB) samples that
is similar to the enrichment observed in basalts
typical of those associated with mantle “hotspot”
plumes and anomalously voluminous basaltic
volcanism [Michael et al., 1989]. These results
are consistent with Scott et al. [1990], who found
that basalts from SER near the Magic Mountain site
are enriched in incompatible elements K, Ti, Rb,

Ba, Nb, and Zr, compared with normal depleted
mid-ocean ridge basalts, and concluded that elemen-
tal ratios at SER (e.g., Nb/Zr) are characteristic of
plume-type mid-ocean ridge basalts. Near the Magic
Mountain site, visual observations during submers-
ible dives show that lobate and pillow lavas pre-
dominate in the axial graben, and that sheet flows
are predominant in the shallowest and flat areas
surrounding the axial graben [Scott et al., 1990].

[8] Extensive hydrothermal deposits and extinct sul-
fide chimneys along the rift valley were discovered
on previous SER mapping expeditions [Davis et al.,
1984; Scott et al., 1990]. Hydrothermal activity in
the rift valley appears to have been locally extensive
in the past. In the study area, two vent fields are cur-
rently active: the “MagicMountain” area [Tunnicliffe
et al., 1986] and the AGOR 171 vent field, which
was located through the associated water column
hydrothermal plume mapped using a conductivity-
temperature-depth profile [McConachy and Scott,
1987] (Figure 2). The Magic Mountain area
remained relatively unexplored until the 2002 expe-
dition, which provided both the local geological
context of the hydrothermal sites and cleared up
ambiguities on the location of the vent systems
[Embley et al., 2002].

3. Faulting Pattern Based on High-
Resolution Bathymetry

[9] The data we present here were collected in the
central part of the SER, in the vicinity of the
“Magic Mountain” hydrothermal field, which is
located ~8 km south of the shallowest point of the
SER (Figure 1). A previous study of the deformation
in this area by Deschamps et al. [2007] used ABE
near-bottom high-resolution bathymetry acquired
using a SM2000 multibeam system to characterize
the fault distribution in the axial valley. In the study
area, the summit of the SER is characterized by a
500 to 600 m wide and 30 to 70 m deep summit
axial graben (Figure 2). The axial graben exposes
numerous extensional fractures and small grabens,
up to tens of meters wide, and normal faults and
hybrid fractures, i.e., fractures with both an opening
component perpendicular to the fracture plane and a
vertical offset parallel to the fracture plane. The axial
graben has a distinct asymmetric shape in relation
with the nonuniform distribution of the deformation,
which is accommodated by few, large faults on the
eastern side of the graben compared to the western
side, where there is a greater abundance of small-
scale tectonic structures. As a result, the western
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flank of the graben displays a more subdued
morphology compared to its more sharply defined
and higher standing eastern flank (Figure 2).

[10] In the northern part of the study area, fault
scarps are sometimes obscured by lava flows, but
in most places, their high angular aspect and their
steep dip (up to 86�) suggest that they are unburied.
Faults are a few meters to several kilometers long,
and the average scarp height is ~10.5 m with a max-
imum of 63 m on the fault that bounds the eastern

side of the axial summit graben. The smooth terrain
west of the axial graben appears almost entirely free
of faults and fissures in the high-resolution bathym-
etry, in striking contrast with the heavily tectonized
axial graben.

4. Fault Restoration

[11] Deschamps et al. [2007] characterized the fault
parameters and calculated the vertical displacement
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field for the SER crest fault population using the
high resolution ABE bathymetry data set. Here we
extend the results of that study using the method
of De Chabalier and Avouac [1994] to remove this
vertical displacement field from the SER bathyme-
try and reconstruct the unfaulted seafloor surface.
De Chabalier and Avouac [1994] applied their
method to the deformation of Fieale Volcano of
the Asal Rift (Djibouti, East Africa), a subaerial
analog of a slow spreading mid-ocean ridge. To do
so, they determined vertical offsets on the faults on
a series of cross-sections oriented perpendicular to
the rift axis, taking into account erosion at the crest
and deposition at the base of scarps, the topography
being linearly extrapolated onto the fault plane. They
then restored the topography across the rift to a
continuous surface by subtracting the vertical offsets
on the faults. Carbotte et al. [2003] also applied this
method to the southern East Pacific Rise mid-ocean
ridge and showed that the method is valid for the
analysis of volcanic and tectonic processes at
submarine spreading centers when the resolution
of bathymetric data is high enough.

[12] Using the gridded ABE SM2000 multibeam
bathymetry with a 1 m cell size, we extracted 11
profiles oriented perpendicular to the axial summit
graben to analyze tectonic structures and calculate
tectonic strain (Figure 2) [Deschamps et al., 2007].
These profiles are spaced 150 to 200 m apart. In the
vicinity of the Magic Mountain site, we extracted
eight more profiles that are spaced only 50 m apart
to reconstruct the initial three-dimensional geometry
of the ridge axis near the vent site (Figure 3). Along
each profile, the location and vertical offset of faults
are determined, taking into account the presence of
talus debris aprons and/or volcanic flows. Talus
ramps are often developed at the base of active fault
scarps due to their degradation, and it is important to
account for them. These talus ramps are recognized
by a variation in scarp dip at the foot of the fault,
but of course this can also reflect other processes
such as lava flow emplacement during or after
faulting [see Deschamps et al., 2007, Figure 7B].
To take into account erosion at the crest and
deposition of debris or emplacement of lava flows
at the base of the scarps, the topography was linearly
extrapolated onto the fault plane. To remove vertical
fault displacements from the topographic data, the
western end of each profile was held fixed and the
seafloor was shifted up or down at each vertical
offset related to a fault. To avoid bias due to talus
deposition at the base of faults and erosion of the
fault crests, we considered the entire height differ-
ence between the top and the bottom of fault scarps

even if the slope angle is lower. Vertical relief at a
fault differs from its vertical throw if the surface slopes
of adjacent blocks are nonhorizontal and if fault dips
are nonvertical. In our study area, however, these
potential errors are minor (~3%) [see De Chabalier
and Avouac, 1994] due to the low regional slopes of
fault blocks within the study area (<5�) and the steep
fault dips (60 to 86�) [Deschamps et al., 2007].

[13] Figures 3d and 3e show the restored surface
along two cross-sections (profiles d and h, see location
on Figure 3a) across the axial valley, at ~49�4601500N
and ~49�4501500N, i.e., north and south of the Magic
Mountain site, respectively. Figure 4 shows the
vertically restored surface obtained by gridding the
fault-shifted topography, at a 10m grid cell size, along
the eight profiles located near the Magic Mountain
site. A smaller cell size would have been less useful
because it would have introduced short-wavelength
noise due to remaining minor fault offsets where
low relief portions of faults were not accurately
resolved or discrete volcanic features may have mis-
takenly been flagged as fault relief. The restored
topography represents the topography of the ridge
summit prior to the formation of the axial graben,
which is approximately 11,000–14,000 years ago,
considering a full spreading rate of 4.5 to 6 cm/yr
and ~650 m of horizontal extension removed during
the topographic restoration [e.g., Botros and Johnson,
1988; Braunmiller and Nábelek, 2002]. The restored
topography has the shape of a broad dome >500 m
in diameter with a gently undulating surface with
several< 10m high undulations. These bumps appear
to be similar to the initial shape (i.e., before dismem-
bering due to deformation) of the volcanic mounds
observed in the study area. Some of the gentle slopes
(less than 5�) may be due to tilting of the blocks that
were not back-tilted during the restoration process.
The largest vertical changes (~60 m) between the
original and the restored topography seem to occur
in the southern part of the study area, where the
amount of tectonic strain is the highest (>10% assum-
ing dip values of 70�) [Deschamps et al., 2007]. To
the north, the restored topography is generally close
to 20 m (~40 mmaximum) above the former topogra-
phy of the ridge summit at ~�11,000–14,000 years.

5. Lava Morphology and Relation With
Tectonic Structures

5.1. Seafloor Morphology From High-
Resolution Bathymetry

[14] West of the axial summit graben, we observe a
smooth and flat terrace with several subtle bumps,
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each a few meters high (Figure 2). This terrace is
>1.5 km in basal diameter and up to 60 m high
compared to its surroundings. Such smooth topog-
raphy is not related to sediment cover. Submersible
dives and deep-tow photography reveal only a thin
dusting of sediment covering sheet flows with a few
occurrences of lobate flows [e.g., Scott et al., 1990]
(Figure 5). In places, sheet flows have cascaded

down the west side of the axial summit graben
[Scott et al., 1990]. Based on ROPOS dive R665
we observed one collapsed, ~7 m deep trough
(Figures 2, 5, and 6a), which corresponds to a
drained lava lake that was previously identified
during submersible dives [Scott et al., 1990]. These
submersible dives also identified lobate and sheet
flows with crusts of lava only a few centimeters to
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decimeters thick enclosing large voids, and on a
larger scale, drained and collapsed lava lakes up
to tens of meters across and tens of meters deep
(see locations on Figures 3 and 5). We observe a
~4 m deep and ~100 m long lava channel going
down an 8 m high dome, and several collapse pits,
6 to 30 m in diameter, within the surrounding
smooth surfaced terrain (Figure 6b). The size of
these collapsed troughs approaches the resolution
of the data, but we do observe them in both the
multibeam data set acquired using SM2000 sonar
and the scanning Imagenex scanning sonar data,
which confirms they are real features. We suggest
that these collapse features form directly over
eruptive fissures [e.g., Fornari et al., 1998; White
et al., 2000; Caress et al., 2012].

[15] When getting closer to the axial graben, we
observe an increasing number of circular to elon-
gated mounds (mounds A to H on Figures 2 and 7),
with diameters that range from a few tens of meters
to 300 m. They are usually less than 25 m high, but
a few reach ~45 m in height. These features have
rounded summits with no craters and are accumula-
tions of pillow and lobate lava [Scott et al., 1990].
They are either isolated (mound A or B on Figures 2
and 7, for example) or clustered (mounds C, F). We
cannot establish the relative age of sheet flows and
pillow mounds located west of the axial summit
graben, but pillow mounds seem to have been built
on top of the smooth terrain. We observe that
most of these mounds are centered/located over
the along-strike extension of fissures or grabens
(mounds B, D, E, F, G). These grabens are most
often narrow (<15 m in width), except for mounds
B and C, which are located above a ~40 m wide
graben, up to 16 m deep, with a horst in the middle.
Lava partially fills the graben where mound C
emerges from the northern edge of the elongated
mound (Figure 7). These relations suggest that the

graben formed during a dike intrusion and then
was partially buried by lava when the dike reached
the surface to erupt. A similar relationship was
documented at the Juan de Fuca CoAxial segment
in Chadwick et al. [2001].

[16] The pillow and lobate mounds that are observed
within, or in the vicinity of the axial graben, are
highly fissured and faulted (Figure 7), with highly
angular morphology and steep tectonic scarps. The
angular shape and steep dip (up to 86�) of fissures
and faults south of 49�460N suggest that they formed
after lava mound emplacement. North of this latitude
and east of the lava mounds B and C, movement on
several faults was clearly synchronous with lava
emplacement, as shown by their rounded shape and
the more gentle dips of fault walls (Figure 7). The
axial valley is highly fissured and faulted, which
suggests no significant volcanic burial has occurred
recently, contrary to what is commonly observed
along other slow to fast-spreading mid-ocean ridges
[e.g., Deschamps et al., 2005; Luyendyk and
Macdonald, 1977; Fundis et al., 2010].

5.2. Lava Flow Morphology From
Visual Observations

[17] Visual observations of lava flow morphology in
the axial zone of the SERwere obtained using a cam-
era system on ROV ROPOS [Embley et al., 2002].
ROPOS dive R665 made a transect across the axial
valley (see dive track in Figures 2 and 5). ROV
observations reveal no significant differences
between the various lava flows in terms of texture:
all of the flows are similar in appearance and consist
entirely of pillow lava with a mixture of smooth and
striated textures. The pillow lavas are bulbous
mounds, approximately equidimensional, with typi-
cal diameters of 0.5–2 m. Elongated pillows or

Figure 4. 2-D view of the (A) original and (B) restored bathymetry near the Magic Mountain Field. Gridding is made
using the eight reconstructed profiles shown of Figure 3.
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cylindrical flow lobes form on steeper slopes and are
oriented downhill (Figure 8). We do not observe
any collapsed surfaces as seen within sheet flows
outside the axial valley (see above). The sedimen-
tary cover is thin enough that the underlying rocks
are exposed, except in areas of hydrothermal
venting were the sediment cover reaches a few cen-
timeters thick (Figure 8). In these areas, the lavas
are typically covered by characteristic greenish-
yellow and dull black hydrothermal sediments.

[18] In several places corresponding to fault traces,
the terrain is marked by broken lava flow surfaces
and numerous “in place” shattered pillow forms of
angular basalt blocks (Figure 8). Talus rock frag-
ments are associated with fracturing from faulting.
Numerous fissures and small-throw step faults are
also observed. These small-scale features are barely
resolvable in the high-resolution bathymetric data
(Figures 7 and 8). Rock fragments and rubble are
commonly composed of angular blocks of 10 to

Figure 5. Bathymetry of the SER summit with the distribution of the lava morphologies from SeaMARC I side-scan
sonar imagery [Davis et al., 1984; Scott et al. 1990] and visual observations during ROPOS dive R665 (track indicated
in black, see Figure 8).
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60 cm in size and are mostly found at the base of
these scarps. We do not observe any fault scarps
that have been overrun, draped over, or covered
by lava flows. It is common to see faults and
fissures alternating with an intervening fault-free
strip of seafloor.

6. Interpretation/Discussion

6.1. Lava Morphology and Eruption
Dynamics

[19] The subcircular, 50 to 300 m in diameter, volca-
nic mounds in the axial valley and in its vicinity are

composed of pillows and tubes. Our observations
and previous ones suggest that the smooth terrain
forming the crestal plateau outside the axial valley
and in which collapse pits are observed are mainly
composed of sheet and lobate flows. Indeed, collapse
pits are indeed generally observed within lobate
flows: for example, on the East Pacific Rise, 98%
of collapse pits occur on lobate flows and the rest
within sheet flows [Engels et al., 2003]. Circular
and elongated lava domes found within the axial
valley and in its vicinity are composed of pillow
lava. Lava mounds form when pillow lava piles up
around an eruptive vent with a low-effusion rate
[e.g.,Gregg and Fink, 1995]. These pillow mounds
likely represent the most recent volcanic products
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at the SER. Consistently, it is commonly observed
during dike-fed fissure eruptions on land, that soon
after an eruption begins along a “curtain of fire”
located above a dike, most of the fissure system
shuts down, the flow of the magma localizes, and
lava is discharged at a low-effusion rate from a

few restricted vents for the remainder of the erup-
tion, leading to the construction of bulbous
mounds composed of pillows [e.g., Richter et al.,
1970; Delaney and Pollard, 1982; Kappel and Ryan,
1986; Barone and Ryan, 1988; Chadwick and
Embley, 1994; Head et al., 1996; Smith et al., 1997].
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The morphology and the localization of sheet and
lobate flows and pillow mounds in the study area
suggest that similar processes have occurred along
the SER: an early stage of eruption produced smooth
monogenetic lobate lava flows emplaced during
several episodes of a long-lived eruption, 11,000 to
14,000 years ago. During the emplacement of these
flows, collapse pits formed when ponded lava rapidly
drained back, flowing beneath a frozen carapace that
eventually collapses. At the end of the volcanic
episode, pillow mounds were constructed on top of
the smooth lobate flows. The fact that pillow mounds
have been constructed on top of the smooth flows
suggests that one or more eruption variables changed
during the eruptions, probably including a waning of
eruption rate [Smith et al., 1997]. The fissures and
narrow grabens that cleave several mounds (mounds
B and C for example) probably opened above dikes.
Because several of the observed pillow mounds are
aligned along a single fracture system, they may relate
to a single dike intrusion. Grabens indeed often form
above an intruding dike, because the dike creates
two zones of tension near the surface, parallel to the
dike axis, but offset to either side, as observed in
subaerial volcanic rift zones, [Pollard et al., 1983;
Rubin and Pollard, 1988; Rubin, 1992] and along
mid-ocean ridges [e.g.,Chadwick and Embley, 1998].

6.2. Topography of the Former Axial High

[20] Our model of topographic restoration near
49�450N reveals that the SER in the vicinity of the
Magic Mountain hydrothermal field formed a
region of prominent domal relief, ~11,000 to
14,000 years ago. The vertical changes between
the initial and the restored topography reflect the
integrated effects of volcanism and tectonism
on relief-forming processes [De Chabalier and
Avouac, 1994]. The restored topography indicates
that several tens of meters of inelastic deformation
due to horizontal extension and faulting has taken
place near the Magic Mountain hydrothermal field,
and that this deformation has been more important
in the eastern part of the valley, resulting in its
asymmetric shape in cross-section. The restored
topography has a shape of a broad dome >500 m
in diameter with a gently undulating surface. The
difference between the initial and the restored
surface reflects, essentially, the faulting process. We
do not observe any consistent evidence for inward
(axis)-dipping lava flows, as might be expected for
regions that have significant seafloor subsidence due
to magmatic deflation, such as observed at Axial
Volcano of Juan de Fuca Ridge [Fox et al.,
2001], at the East Pacific Rise, 18�140S [Carbotte

et al., 2003], or in terrestrial volcanic systems
during and after volcanic eruptions [e.g., Sturkell
and Sigmundsson, 2000]. In addition, in this region,
fault scarps generally display sharp shapes and steep
dips suggesting they are unburied by volcanic flows
[Deschamps et al., 2007], which is confirmed by
visual in situ observations. This indicates that faults
postdate the lava deposition, except at latitude
~49�460N, where there is evidence of volcanism
synchronous with faulting (Figure 7).

[21] Axial topographic highs are commonly observed
at fast spreading ridges and sometimes at intermediate
spreading ridges. At fast spreading rates, this axial
high is thought to be mainly due to the buoyancy
of hot rocks and magmas beneath the ridge
[e.g., Carbotte and Macdonald, 1994]. Conse-
quently, as newly formed crust cools and is rafted
off axis, little vestige of such an axial high remains.
At intermediate-rate spreading ridges, the topo-
graphic high may also be partly due to volcanic
construction. Such constructional edifices are split
and preserved on the ridge flanks and form the abys-
sal hills [Carbotte et al., 2006]. This difference in the
nature of the axial high likely reflects a lithosphere
strong enough to support construction of a volcanic
crestal ridge at intermediate spreading rates, but
only rarely at fast spreading rates [Carbotte and
Macdonald, 1994] and/or the relative dominance of
magmatism versus tectonism fast-spreading ridges,
such as envisioned by Curewitz and Karson [1998].

6.3. Evolution of the SER as Revealed by
its Morphology

[22] Our study provides new insights into the evolu-
tion of SERmorphology since ~11,000–14,000 years
ago. The axial morphology clearly evolved from a
“dome-shaped” feature to a fault-bounded asymmet-
ric axial graben, ~500 m wide and ~30–70 m deep.
This evolution appears to have been accompanied
by changes in the magma supply and eruption style
through time both within the axial valley and adja-
cent to it. The abundance of pillow lava mounds in
the valley indicates that the fissure eruptions at this
location occurred at a relatively low effusion rate,
but were of sufficient duration to focus and produce
a line of volcanic edifices [White et al., 2000]. Far
from the axial graben, we observe voluminous
smooth lobate and sheet flows, collapsed features,
and few occurrences of pillow lava. This suggests
that high effusion rate eruptions were common at
the time the SER had a dome-shaped morphology.
The limited number of small lava mounds (2 to 6 m
in height and 40 to 60 m in diameter) formed on top

Geochemistry
Geophysics
GeosystemsG3G3 DESCHAMPS ET AL.: WANING MAGMATIC ACTIVITY ALONG THE SER 10.1002/ggge.20110

1620



of this smooth terrain suggests that fissure erup-
tions rarely focused to point sources for extended
periods, at lower effusion rates.

[23] The undeformed appearance of the axial sum-
mit plateau may be due either to resurfacing by
eruptions onto the ridge flanks outside the axial
valley, or by “escaping” the deformation during a
period of near-axis faulting after the formation of
the broad plateau. Along the intermediate-spreading
Cleft segment, the fact that lavas that fill the axial
valley are younger than the flows on the ridge flank
led Kappel and Ryan [1986] to hypothesize that the
flows on the ridge flanks formed during a previous
episode of robust volcanism. Similarly, Smith et al.
[1994] based on submersible observations and
sampling at Cleft, proposed that robust magmatism
typical of fast-spreading ridges alternates with
periods of nearly amagmatic extension with few
eruptions at a low effusion rate. This kind of waxing
and waning of magmatic phases has also been
proposed to occur along the EPR [e.g., Fornari
et al., 1998; Cormier et al., 2003]. We suggest that
a similar model best explains our observations on
the SER, and that the lava flows that comprise the
restored ridge dome were erupted on-axis during a
period of robust magmatism, and that the lava flows
that pave the axial valley floor and form small
mounds were formed during a period of nearly
amagmatic extension. The spatial pattern of sediment
cover, the extent of the smooth terrain near the ridge
axis, and the cross-cutting relationships between the
smooth terrain and near-axis faults and pillow
mounds suggest that at the SER, the smooth textured
lavas were erupted within a short but waxing phase
of activity, which was then followed by a period of
less voluminous eruptions with a lower eruption
rate. The axial summit graben may have initiated
during this waning phase under continuous tec-
tonic stretching, or, if already existing, deepened
by downfaulting of the inflated summit accompa-
nied by intense fissuring. This collapse probably
happened after a decrease in the magma supply
had occurred. Our ridge topography restoration
indicates that the formation of the axial graben is
mainly due to normal faulting and tectonic extension
processes. As a consequence, the SER is likely
currently splitting tectonically. This hypothesis is
corroborated by the asymmetric shape of the graben,
which reflects a component of simple shear in the
extensional process, according to the model of
Wernicke [1985]. Such a half graben-like structure
is typical in the early stages of deformation within
rift zones [Gudmundsson, 1992]. Due to ongoing
predominant tectonism, this axial depression may

continue to widen until a new magmatic phase will
initiate the construction of a new dome.

[24] The evolution of SER topography over the past
11,000–14,000 years also seems to be accompanied
with a concomitant evolution in hydrothermal activ-
ity. Many vestiges of inactive hydrothermal vents
are observed within this valley, the remaining active
vent site in this area being the Magic Mountain field,
located on the east shoulder of the valley, suggesting
that the hydrothermal activity has decreased as
magmatism waned and tectonism became dominant.

[25] The results of this study support the hypothesis
that there is no continuous magma supply at the
SER, but rather phases of waxing and waning
of magmatism, and associated hydrothermal ac-
tivity, with cycles longer than 11,000–14,000
years. The existence of such volcano-tectonic
cycles at other spreading centers has been inferred
by numerous authors, based on observations and
models [e.g., Parson et al., 1993; Tucholke and
Lin, 1994; Smith et al., 1994; Wilcock and Delaney,
1996; Perfit and Chadwick, 1998; Briais et al.,
2000]. As to the cycle duration, Sauter et al. [1991]
inferred a periodicity of about 0.25 Ma for
the volcano-tectonic cycles on the intermediate-
spreading South-East Indian Ridge. Briais et al.
[2000] inferred magmatic cycles to be less than
1 Ma at the slow-spreading Mid-Atlantic Ridge,
27–30�N, for example.

[26] Our results contrast with those of Carbotte
et al. [2006] and Stakes et al. [2006], who interpreted
seismic observations of crustal structure to suggest
that the large-scale axial rift topography on the JdFR
reflects subcontinuous dike-induced deformation
rather than alternating phases of magmatism and
tectonic extension. In their model, the evolving axial
topography results from progressive rifting, deepen-
ing, and broadening of the axial valley due to dike
intrusions alone. Their model for the JdFR suggests
a relatively constant effusion rate through time
with the axial valley floor of the JdFR displaying
abundant lobate, sheet and massive flows, reflecting
high effusion rates during axial valley formation.
They also observe that the most recent axial erup-
tions are more primitive (higher MgO) whereas in
the case of a decrease of magmatic activity, extrac-
tion of magma would be expected to occur from
magma pockets beneath the segment center and lead
to low-effusion eruptions of more chemically
evolved, incompatible element-depleted basalts
[e.g., Briais et al., 2000; Stakes et al., 2006]. In
addition, dike-induced axial valley formation should
result in a graben that is symmetrical, as observed by
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Carbotte et al. [2006] along the JdFR. However, in
the case of the SER, the axial graben is highly
asymmetric, as shown by cross-sections in Figure 3,
which likely reflects a component of simple shear
in the extensional process, according to the model
of Wernicke [1985]. Deformation on faults and
shear zones is indeed inherently asymmetric
[e.g., Wernicke and Burchfiel, 1982; Wernicke,
1985; Lister et al., 1986; Mutter et al., 1989; Boillot
et al., 1992; Brun and Beslier, 1996], extension of
the upper crust through faulting often leads to half-
graben development, bounded on one side by a
master fault, and on the other by a zone of
more distributed deformation taken up by
minor faults [e.g., Bally, 1982; Morley, 1995;
Patton et al., 1994].

[27] Cousens et al. [1984] and Scott et al. [1990]
found an incompatible element enrichment of
basalts from the SER study area indicating that
the ridge likely lies above a hotspot. The incompat-
ible trace element analysis indicates that the mantle
source of the SER’s basalts is heterogeneous on a
multikilometer scale [Michael, 1988]. Sr isotopic
ratios are correlated with the incompatible ele-
ments ratios, but the isotopic enrichment is very
subdued, which suggests that incompatible element
enrichment occurred relatively recently [Michael
et al., 1985]. Consistently, basalts collected 15
km off-axis (i.e., ~0.7 Ma old), west of the ridge
axis have a depleted Normal Mid-Ocean Ridge Ba-
salt signature, indicating that enriched material has
been introduced only recently into the source re-
gion. Michael et al. [1989] thus concluded that
the enrichment of MORB in the whole region
(north of Axial seamount on the Juan de Fuca
Ridge) is likely related to intermittent pulses of
magma generation from the deep mantle, which en-
riches the upper mantle, in contrast to a more con-
stant and persistent hotspot. In this regard, the
cyclic evolution of the SER documented in this
study may be related to such intermittent pulses in
relation with variable hotspot activity. Neverthe-
less, one can expect the evolution time scale of
the magmatic activity along a ridge segment not
to be entirely identical or in phase with the activity
time scale of a hotspot, the latter (i.e., diffuse or in-
termittent pulses of magma generation from the
deep mantle) being on a longer time scale. Along-
and across-axis lava sampling for dating and geo-
chemical studies would be necessary to better char-
acterize the variability of the magma composition
in space and time and for a better identification of
the magmatic pulses along the ridge and their rela-
tion with the hotspot activity.

7. Conclusions

[28] The geology and structure of the Southern
Explorer Ridge have been examined using high-
resolution multibeam sonar systems mounted on
an AUV, combined with visual observations from
an ROV. The high-resolution bathymetry coupled
with in situ observations on near-axis and flank
regions provide a detailed picture of the morphol-
ogy of the most recent upper crust created at the
SER summit, and were used to interpret its recent
magmato-tectonic history.

[29] Topography restoration reveals that approxi-
mately 11,000 to 14,000 years ago, the ridge was
characterized by widespread volcanism that formed
a wide crestal plateau that is now split by the present
axial valley. Our observations support a model of
cyclic volcanism at the Southern Explorer Ridge, in
which a discontinuous magma supply creates alter-
nating phases of waxing and waning of magmatism.
According to this model, a period of intense effusive
volcanism flooded the axial rift with sheet and lobate
lava flows, and formed a several kilometer-wide
plateau at the ridge summit. At this time, volcanic
construction dominated over tectonic strain in shap-
ing the morphology of the segment. This episode
was subsequently followed by a decrease in eruptive
volume and in the distance travelled by the lava
flows, the most recent eruptions being smaller and
confined to the axial graben. During this waning
phase, the deepening and widening of the axial
graben has been accompanied by a concomitant
decrease in hydrothermal activity. This tectonically
dominated episode probably initiated in the southern
part of the SER, where the rift is presently deeper and
wider and propagated northward. The role of tectonic
processes in shaping the present day graben is
underlined by its asymmetric shape reflecting a com-
ponent of simple shear in the extensional processes.

[30] Such discontinuous magma supply may relate
to the periodic disappearance or deepening of the
magma source during ongoing spreading due to
plate divergence. During a waning phase, the floor
of the axial valley is not necessarily devoid of
volcanic activity, but the volumes and rates of
eruption are significantly reduced, leading to low
effusion-rate eruptions from point sources. Such
intermittent magmatic and tectonic processes likely
result in the alternating central-high/central-low
morphology observed in the shape of abyssal hills
in the vicinity of the SER, and alternating phases
of intense and moribund hydrothermal activity.
Whether or not this cyclicity is due to intermittent
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pulses of magma generation from the deep mantle
in relation with the hotspot located in the vicinity
of the ridge axis is not clear.

[31] Our hypothesis contrasts with that of Carbotte
et al. [2006], who suggested that at the Juan de Fuca
Ridge axial rift topography is related to dike-induced
deformation rather than tectono-magmatic cycles,
based on the fact that the axial graben width and
height diminish where axial magmatic reflectors
disappear, and on the observation of high-rate effu-
sive lava flooring the axial valleys. In such a model,
the bounding ridges are relicts of an axial volcanic
ridge that is subsequently split by dike-induced
faulting and rafted onto the ridge flanks.

[32] Additional geochemical studies and dating of
well-identified lava flows at the SER ridge axis and
flanks would help to distinguish between these two
hypotheses by establishing a relative chronology of
magmatic events in this area in relation with the
degree of fractionation of the basalts. Seismic pro-
files would also help to document the depth of an
axial magma chamber at Southern Explorer Ridge.
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