170 research outputs found

    FIRE SIMULATIONS OF A FISHING RESEARCH VESSEL WITH FRP STRUCTURES

    Get PDF
    The fire safety effect of using fibre-reinforced polymer (FRP) as the primary construction material in a fishing research vessel was studied by fire simulations. The effect of FRP structures on fire development was assessed by comparing the simulated gas temperatures and potential heat releases with FRP and steel structures. The structural integrity of FRP structures was assessed using simulated temperatures of the structures as indicators of integrity. The effect of protective mineral wool and intumescent coating layers was also quantified. The results showed that despite the protection, the structural integrity of FRP bulkheads could be compromised in fire conditions. Mineral wool was found to be better protection than the intumescent coating: it can either prevent or postpone the pyrolysis of the FRP bulkhead, depending on the fire exposure

    Emission factors from residential combustion appliances burning Portuguese biomass fuels

    Get PDF
    Smoke from residential wood burning has been identified as a major contributor to air pollution, motivating detailed emission measurements under controlled conditions. A series of experiments were performed to compare the emission levels from two types of wood-stoves to those of fireplaces. Eight types of biomass were burned in the laboratory: wood from seven species of trees grown in the Portuguese forest (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europaea and Quercus ilex rotundifolia) and briquettes produced from forest biomass waste. Average emission factors were in the ranges 27.5–99.2 g CO kg 1, 552–1660 g CO2 kg 1, 0.66– 1.34 g NO kg 1, and 0.82–4.94 g hydrocarbons kg 1 of biomass burned (dry basis). Average particle emission factors varied between 1.12 and 20.06 g kg 1 biomass burned (dry basis), with higher burn rates producing significantly less particle mass per kg wood burned than the low burn rates. Particle mass emission factors from wood-stoves were lower than those from the fireplace. The average emission factors for organic and elemental carbon were in the intervals 0.24–10.1 and 0.18–0.68 g kg 1 biomass burned (dry basis), respectively. The elemental carbon content of particles emitted from the energyefficient ‘‘chimney type’’ logwood stove was substantially higher than in the conventional cast iron stove and fireplace, whereas the opposite was observed for the organic carbon fraction. Pinus pinaster, the only softwood species among all, was the biofuel with the lowest emissions of particles, CO, NO and hydrocarbons

    Variation of Absorption Angstrom Exponent in Aerosols From Different Emission Sources

    Get PDF
    The absorption Angstrom exponent (AAE) describes the spectral dependence of light absorption by aerosols. AAE is typically used to differentiate between different aerosol types for example., black carbon, brown carbon, and dust particles. In this study, the variation of AAE was investigated mainly in fresh aerosol emissions from different fuel and combustion types, including emissions from ships, buses, coal-fired power plants, and residential wood burning. The results were assembled to provide a compendium of AAE values from different emission sources. A dual-spot aethalometer (AE33) was used in all measurements to obtain the light absorption coefficients at seven wavelengths (370-950 nm). AAE(470/950) varied greatly between the different emission sources, ranging from -0.2 +/- 0.7 to 3.0 +/- 0.8. The correlation between the AAE(470/950) and AAE(370-950) results was good (R-2 = 0.95) and the mean bias error between these was 0.02. In the ship engine exhaust emissions, the highest AAE(470/950) values (up to 2.0 +/- 0.1) were observed when high sulfur content heavy fuel oil was used, whereas low sulfur content fuels had the lowest AAE(470/950) (0.9-1.1). In the diesel bus exhaust emissions, AAE(470/950) increased in the order of acceleration (0.8 +/- 0.1), deceleration (1.1 +/- 0.1), and steady driving (1.2 +/- 0.1). In the coal-fired power plant emissions, the variation of AAE(470/950) was substantial (from -0.1 +/- 2.1 to 0.9 +/- 1.6) due to the differences in the fuels and flue gas cleaning conditions. Fresh wood-burning derived aerosols had AAE(470/950) from 1.1 +/- 0.1 (modern masonry heater) to 1.4 +/- 0.1 (pellet boiler), lower than typically associated with wood burning, while the burn cycle phase affected AAE variation.Peer reviewe

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    Retinoic acid inducible gene I Activates innate antiviral response against human parainfluenza virus type 3

    Get PDF
    Human parainfluenza virus type 3 (HPIV3) is a respiratory paramyxovirus that infects lung epithelial cells to cause high morbidity among infants and children. To date, no effective vaccine or antiviral therapy exists for HPIV3 and therefore, it is important to study innate immune antiviral response induced by this virus in infected cells. Type-I interferons (IFN, interferon-α/β) and tumor necrosis factor-α (TNFα activated by NFκB) are potent antiviral cytokines that play an important role during innate immune antiviral response. A wide-spectrum of viruses utilizes pattern recognition receptors (PRRs) like toll-like receptors (TLRs) and RLH (RIG like helicases) receptors such as RIGI (retinoic acid inducible gene -I) and Mda5 to induce innate antiviral response. Previously it was shown that both TNFα and IFNβ are produced from HPIV3 infected cells. However, the mechanism by which infected cells activated innate response following HPIV3 infection was not known. In the current study, we demonstrated that RIGI serves as a PRR in HPIV3 infected cells to induce innate antiviral response by expressing IFNβ (via activation of interferon regulatory factor-3 or IRF3) and TNFα (via activation of NF-κB)

    A Real-Time PCR Antibiogram for Drug-Resistant Sepsis

    Get PDF
    Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL). Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔCt<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01). Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 Gram-negative and 2 Gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24 hours

    Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances

    Get PDF
    Residential biomass combustion significantly contributes to light-absorbing carbonaceous aerosols in the atmosphere, impacting the earth's radiative balance at regional and global levels. This study investigates the contribution of brown carbon (BrC) to the total particulate light absorption in the wavelength range of 370–950 nm (BrC370–950) and the particulate absorption Ångström exponents (AAE470/950) in 15 different European residential combustion appliances using a variety of wood-based fuels. BrC370–950 was estimated to be from 1 % to 21 % for wood log stoves and 10 % for a fully automatized residential pellet boiler. Correlations between the ratio of organic to elemental carbon (OC / EC) and BrC370–950 indicated that a one-unit increase in OC / EC corresponded to approximately a 14 % increase in BrC370–950. Additionally, BrC370–950 was clearly influenced by the fuel moisture content and the combustion efficiency, while the effect of the combustion appliance type was less prominent. AAE470/950 of wood log combustion aerosols ranged from 1.06 to 1.61. By examining the correlation between AAE470/950 and OC / EC, an AAE470/950 close to unity was found for pure black carbon (BC) particles originating from residential wood combustion. This supports the common assumption used to differentiate light absorption caused by BC and BrC. Moreover, diesel aerosols exhibited an AAE470/950 of 1.02, with BrC contributing only 0.66 % to the total absorption, aligning with the assumption employed in source apportionment. These findings provide important data to assess the BrC from residential wood combustion with different emission characteristics and confirm that BrC can be a major contributor to particulate UV and near-UV light absorption for northern European wood stove emissions with relatively high OC / EC ratios.</p

    Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke

    Get PDF
    Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJZahl^{Zahl}) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects

    An Efficient Strategy for Broad-Range Detection of Low Abundance Bacteria without DNA Decontamination of PCR Reagents

    Get PDF
    BACKGROUND: Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. METHODOLOGY/PRINCIPAL FINDINGS: We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3'-end complementary to the template bacterial sequence and a 5'-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10-100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. CONCLUSIONS/SIGNIFICANCE: Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories
    corecore