90 research outputs found

    De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis

    Get PDF
    Dramatic progress in the development of next-generation sequencing technologies has enabled accurate genome-wide characterization of the binding sites of DNA-associated proteins. This technique, baptized as ChIP-Seq, uses a combination of chromatin immunoprecipitation and massively parallel DNA sequencing. Other published tools that predict binding sites from ChIP-Seq data use only positional information of mapped reads. In contrast, our algorithm MICSA (Motif Identification for ChIP-Seq Analysis) combines this source of positional information with information on motif occurrences to better predict binding sites of transcription factors (TFs). We proved the greater accuracy of MICSA with respect to several other tools by running them on datasets for the TFs NRSF, GABP, STAT1 and CTCF. We also applied MICSA on a dataset for the oncogenic TF EWS-FLI1. We discovered >2000 binding sites and two functionally different binding motifs. We observed that EWS-FLI1 can activate gene transcription when (i) its binding site is located in close proximity to the gene transcription start site (up to ∌150 kb), and (ii) it contains a microsatellite sequence. Furthermore, we observed that sites without microsatellites can also induce regulation of gene expression—positively as often as negatively—and at much larger distances (up to ∌1 Mb)

    VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis

    Get PDF
    Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease. A subset of VGLL2-NCOA2 zebrafish tumors transcriptionally cluster with embryonic somitogenesis and identify VGLL2-NCOA2 developmental programs, including a RAS family GTPase, ARF6. In VGLL2-NCOA2 zebrafish, mouse, and patient tumors, ARF6 is highly expressed. ARF6 knockout suppresses VGLL2-NCOA2 oncogenic activity in cell culture, and, more broadly, ARF6 is overexpressed in adult and pediatric sarcomas. Our data indicate that VGLL2-NCOA2 is an oncogene that leverages developmental programs for tumorigenesis and that reactivation or persistence of ARF6 could represent a therapeutic opportunity

    An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma

    Full text link
    The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment

    The Oncogenic EWS-FLI1 Protein Binds In Vivo GGAA Microsatellite Sequences with Potential Transcriptional Activation Function

    Get PDF
    The fusion between EWS and ETS family members is a key oncogenic event in Ewing tumors and important EWS-FLI1 target genes have been identified. However, until now, the search for EWS-FLI1 targets has been limited to promoter regions and no genome-wide comprehensive analysis of in vivo EWS-FLI1 binding sites has been undertaken. Using a ChIP-Seq approach to investigate EWS-FLI1-bound DNA sequences in two Ewing cell lines, we show that this chimeric transcription factor preferentially binds two types of sequences including consensus ETS motifs and microsatellite sequences. Most bound sites are found outside promoter regions. Microsatellites containing more than 9 GGAA repeats are very significantly enriched in EWS-FLI1 immunoprecipitates. Moreover, in reporter gene experiments, the transcription activation is highly dependent upon the number of repeats that are included in the construct. Importantly, in vivo EWS-FLI1-bound microsatellites are significantly associated with EWS-FLI1-driven gene activation. Put together, these results point out the likely contribution of microsatellite elements to long-distance transcription regulation and to oncogenesis

    The First European Interdisciplinary Ewing Sarcoma Research Summit

    Get PDF
    The European Network for Cancer Research in Children and Adolescents (ENCCA) provides an interaction platform for stakeholders in research and care of children with cancer. Among ENCCA objectives is the establishment of biology-based prioritization mechanisms for the selection of innovative targets, drugs, and prognostic markers for validation in clinical trials. Specifically for sarcomas, there is a burning need for novel treatment options, since current chemotherapeutic treatment protocols have met their limits. This is most obvious for metastatic Ewing sarcoma (ES), where long term survival rates are still below 20%. Despite significant progress in our understanding of ES biology, clinical translation of promising laboratory results has not yet taken place due to fragmentation of research and lack of an institutionalized discussion forum. To fill this gap, ENCCA assembled 30 European expert scientists and five North American opinion leaders in December 2011 to exchange thoughts and discuss the state of the art in ES research and latest results from the bench, and to propose biological studies and novel promising therapeutics for the upcoming European EWING2008 and EWING2012 clinical trials

    TThe ENCCA-WP7/EuroSarc/EEC/PROVABES/EURAMOS 3rd European Bone Sarcoma Networking Meeting/Joint Workshop of EU Bone Sarcoma Translational Research Networks; Vienna, Austria, September 24–25, 2015. Workshop Report

    Get PDF
    This report summarizes the results of the 3rd Joint ENCCA-WP7, EuroSarc, EEC, PROVABES, and EURAMOS European Bone Sarcoma Network Meeting, which was held at the Children's Cancer Research Institute in Vienna, Austria on September 24-25, 2015. The joint bone sarcoma network meetings bring together European bone sarcoma researchers to present and discuss current knowledge on bone sarcoma biology, genetics, immunology, as well as results from preclinical investigations and clinical trials, to generate novel hypotheses for collaborative biological and clinical investigations. The ultimate goal is to further improve therapy and outcome in patients with bone sarcomas

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    Cellules souches et tumeurs conjonctives : le sarcome d’Ewing

    No full text
    International audienceThis article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyrigh

    Three-Hybrid Screens: Inducible Third-Party Systems

    No full text
    International audience1. INTRODUCTION Recent studies have brought up the existence of several molecular complexes either stable, like the RNA polymerase II holoenzyme, transcription factor TFIID and mediators, or transient as could be observed in the various steps of the transcription process e.g. initiation, elongation and termination. These observations point out the fact that regulation of different cellular mechanisms is orchestrated by interactions between molecular species either to modify proteins or to position one of them within a complex that then will be functional. Several techniques such as affinity precipitation, glycerol gradient sedimentation and the yeast two-hybrid system are currently used to study protein-protein interactions (1). These various methods, usually investigating the connection between two partners, keep in account only the strong (and stable) interactions and neglect the weaker ones. Considering the complexes studied so far, it is suspected and sometimes shown that interactions often occur between more than two proteins, e.g. to stabilize the complex. In an effort to understand the various biological mechanisms-and in our case gene expression regulation-, we were interested in developing the yeast three-(or tri-)hybrid system. The three-hybrid system, as illustrated in figure 1, is based on the reconstitution of a transcriptional activator complex either to search for or to study a protein that interacts with two others and to acquire information about ternary complex assembly (2). This technique detects direct or mediated interactions between two fusion proteins that contain either a DNA binding domain (DBD; the DBD-X protein) or an activation domain (AD; the AD-Y protein). In some cases, when these two hybrid proteins interact weakly or not at all, a third partner (the protein Z) is necessary to promote (to induce) the formation of the transcriptional activator allowing the transcription of the reporter genes. Thus, specific and stable protein-protein interactions between X, Y and Z lead to the activation of the reporter genes that are integrated in the yeast genome. The HIS3 reporter gene contains a specific DNA sequence which can be recognized by the DBD of the transcriptional activator. Activation of the HIS3 gene permits the endogenous synthesis of histidine allowing the yeast to grow on histidine-lacking media. Activation of the LacZ gene, another reporter gene containing the same DNA binding element, will lead to the synthesis of the ÎČ-galactosidase (ÎČ-Gal) that catalyses the transformation of either X-Gal (5-bromo-4-chloro-3-indolyl ÎČ-D-galactopyranoside) or ONPG (o-nitrophenyl-ÎČ-D-galactopyranoside) into a detectable blue or yellow product, respectively. There are several options to reconstitute the transcriptional activator: (i) the third partner Z can act as a bridging factor (Fig.1A) by interacting with both the DBD-X and AD-Y, thus allowing the DNA-binding protein X to target the basal transcription machinery; (ii) In case of weak interactions, Z may function as a stabilising factor (Fig.1B) that strengthens the interaction between X and Y; (iii) In some other cases, reconstitution of the transcriptional activator requires some post-transcriptional modifications of one of the two partners, in order to allow interaction between X and Y. The third partner Z will then be a regulating factor (Fig.1C), an enzyme that will not necessarily be part of the reconstituted transcriptional activator. When DBD-X and AD-Y are sufficient to reconstitute a stable transcriptional activator, the three-hybrid system can also be used for the search of inhibitors. In this case, the Z partner can act as an inhibitor (Fig.1D) by interacting with, or enzymatically modifying, one of the two main partners, thus preventing their interactions. This will result in the inhibition of the expression of the reporter genes followed by growth restriction on histidine-lacking media as well as repression of the ÎČ-Gal activity

    BAFfling pathologies: Alterations of BAF complexes in cancer

    No full text
    International audienceTo activate or repress specific genes, chromatin is constantly modified by chromatin-remodeling complexes. Among these complexes, the SWItch/Sucrose Non-Fermenting (SWI/SNF) complex, also referred to as BRG1-Associated Factor (BAF) complex, moves the nucleosome along chromatin using energy provided by ATP hydrolysis. In mammalian organisms, the SWI/SNF complex is composed of 10-15 subunits, depending on cell type, and a defect in one of these subunits can have dramatic consequences. In this review we will focus on the alterations identified in the SWI/SNF (BAF) complex subunits that lead to cancerous pathologies. While SMARCB1 was the first mutated subunit to be reported in a majority of malignant rhabdoid tumors, the advent of next-generation sequencing allowed the discovery of mutations in various SWI/SNF subunits within a broad spectrum of cancers. In most cases, the mutation leads to a loss of expression or to a truncated subunit unable to perform its function. Even though it is now commonly acknowledged that approximately 20% of all cancers present a mutation in a SWI/SNF subunit, some cancers are associated to a specific alteration of a SWI/SNF subunit, which acts either as tumor suppressor genes or as oncogenes, and therefore constitute diagnostic or prognostic biomarkers. Consistently, therapeutic strategies targeting SWI/SNF subunits or the genes affected downstream have been revealed to treat cancers
    • 

    corecore