1,836 research outputs found

    Adaptive computational methods for aerothermal heating analysis

    Get PDF
    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated

    Pre- and postprocessing techniques for determining goodness of computational meshes

    Get PDF
    Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics

    Environmental constraints influencing survival of an African parasite in a north temperate habitat: effects of temperature on development within the host

    Get PDF
    The monogenean Protopolystoma xenopodis has been established in Wales for >40 years following introduction with Xenopus laevis from South Africa. This provides an experimental system for determining constraints affecting introduced species in novel environments. Parasite development post-infection was followed at 15, 20 and 25 °C for 15 weeks and at 10 °C for51 year and correlated with temperatures recorded inWales. Development was slowed/arrested at410 °C which reflects habitat conditions for >6 months/year. There was wide variation in growth at constant temperature (body size differing by >10 times) potentially attributable in part to genotype-specific host-parasite interactions. Parasite density had no effect on size but host sex did: worms in males were 1·8 times larger than in females. Minimum time to patency was 51 days at 25 °C and 73 days at 20 °C although some infections were still not patent at both temperatures by 105 days p.i. In Wales, fastest developing infections may mature within one summer (about 12 weeks), possibly accelerated by movements of hosts into warmer surface waters. Otherwise, development slows/stops in October–April, delaying patency to about 1 year p.i., while wide variation in developmental rates may impose delays of 2 years in some primary infections and even longer in secondary infections

    Environmental constraints influencing survival of an African parasite in a north temperate habitat: effects of temperature on egg development

    Get PDF
    SUMMARYFactors affecting survival of parasites introduced to new geographical regions include changes in environmental temperature. Protopolystoma xenopodis is a monogenean introduced with the amphibian Xenopus laevis from South Africa to Wales (probably in the 1960s) where low water temperatures impose major constraints on life-cycle processes. Effects were quantified by maintenance of eggs from infections in Wales under controlled conditions at 10, 12, 15, 18, 20 and 25°C. The threshold for egg viability/ development was 15°C. Mean times to hatching were 22 days at 25°C, 32 days at 20°C, extending to 66 days at 15°C. Field temperature records provided calibration of transmission schedules. Although egg production continues year-round, all eggs produced during >8 months/ year die without hatching. Output contributing significantly to transmission is restricted to 10 weeks (May-mid-July). Host infection, beginning after a time lag of 8 weeks for egg development, is also restricted to 10 weeks (July-September). Habitat temperatures (mean 15·5°C in summer 2008) allow only a narrow margin for life-cycle progress: even small temperature increases, predicted with 'global warming', enhance infection. This system provides empirical data on the metrics of transmission permitting long-term persistence of isolated parasite populations in limiting environments

    Gain control from beyond the classical receptive field in primate primary visual cortex

    Get PDF
    Gain control is a salient feature of information processing throughout the visual system. Heeger (1991, 1992) described a mechanism that could underpin gain control in primary visual cortex (VI). According to this model, a neuron's response is normalized by dividing its output by the sum of a population of neurons, which are selective for orientations covering a broad range. Gain control in this scheme is manifested as a change in the semisaturation constant (contrast gain) of a VI neuron. Here we examine how flanking and annular gratings of the same or orthogonal orientation to that preferred by a neuron presented beyond the receptive field modulate gain in V1 neurons in anesthetized marmosets (Callithrix jacchus). To characterize how gain was modulated by surround stimuli, the Michaelis-Menten equation was fitted to response versus contrast functions obtained under each stimulus condition. The modulation of gain by surround stimuli was modelled best as a divisive reduction in response gain. Response gain varied with the orientation of surround stimuli, but was reduced most when the orientation of a large annular grating beyond the classical receptive field matched the preferred orientation of neurons. The strength of surround suppression did not vary significantly with retinal eccentricity or laminar distribution. In the mannoset, as in macaques (Angelucci et al., 2002a,b), gain control over the sort of distances reported here (up to 10 deg) may be mediated by feedback from extrastriate areas

    Dust-to-Gas Ratio and Metallicity in Dwarf Galaxies

    Full text link
    We examine the dust-to-gas ratio as a function of metallicity for dwarf galaxies [dwarf irregular galaxies (dIrrs) and blue compact dwarf galaxies (BCDGs)]. Using a one-zone model and adopting the instantaneous recycling approximation, we prepare a set of basic equations which describes processes of dust formation and destruction in a galaxy. Four terms are included for the processes: dust formation from heavy elements ejected by stellar mass loss, dust destruction in supernova remnants, dust destruction in star-forming regions, and accretion of heavy elements onto preexisting dust grains. Solving the equations, we compare the result with observational data of nearby dIrrs and BCDGs. The solution is consistent with the data within the reasonable ranges of model parameters constrained by the previous examinations. This means that the model is successful in understanding the dust amount of nearby galaxies. We also show that the accretion rate of heavy element onto preexisting dust grains is less effective than the condensation of heavy elements in dwarf galaxies.Comment: 14 pages LaTeX, 4 figures, to appear in Ap

    Metallicities of 0.3<z<1.0 Galaxies in the GOODS-North Field

    Full text link
    We measure nebular oxygen abundances for 204 emission-line galaxies with redshifts 0.3<z<1.0 in the Great Observatories Origins Deep Survey North (GOODS-N) field using spectra from the Team Keck Redshift Survey (TKRS). We also provide an updated analytic prescription for estimating oxygen abundances using the traditional strong emission line ratio, R_{23}, based on the photoionization models of Kewley & Dopita (2003). We include an analytic formula for very crude metallicity estimates using the [NII]6584/Halpha ratio. Oxygen abundances for GOODS-N galaxies range from 8.2< 12+log(O/H)< 9.1 corresponding to metallicities between 0.3 and 2.5 times the solar value. This sample of galaxies exhibits a correlation between rest-frame blue luminosity and gas-phase metallicity (i.e., an L-Z relation), consistent with L-Z correlations of previously-studied intermediate-redshift samples. The zero point of the L-Z relation evolves with redshift in the sense that galaxies of a given luminosity become more metal poor at higher redshift. Galaxies in luminosity bins -18.5<M_B<-21.5 exhibit a decrease in average oxygen abundance by 0.14\pm0.05 dex from z=0 to z=1. This rate of metal enrichment means that 28\pm0.07% of metals in local galaxies have been synthesized since z=1, in reasonable agreement with the predictions based on published star formation rate densities which show that ~38% of stars in the universe have formed during the same interval. (Abridged)Comment: AASTeX, 49 pages, 16 figures, accepted for publication in The Astrophysical Journa

    Evaluation of Automated Anthropometrics Produced By Smartphone-Based Machine Learning: A Comparison With Traditional Anthropometric Assessments

    Get PDF
    Automated visual anthropometrics produced by mobile applications are accessible and cost-effective with the potential to assess clinically relevant anthropometrics without a trained technician present. Thus, the aim of this study was to evaluate the precision and agreement of smartphone-based automated anthropometrics against reference tape measurements. Waist and hip circumference (WC; HC), waist-to-hip ratio (WHR), and waist-to-height ratio (W:HT), were collected from 115 participants (69 F) using a tape measure and two smartphone applications (MeThreeSixty®, myBVI®) across multiple smartphone types. Precision metrics were used to assess test-retest precision of the automated measures. Agreement between the circumferences produced by each mobile application and the reference were assessed using equivalence testing and other validity metrics. All mobile applications across smartphone types produced reliable estimates for each variable with ICCs ≥0.93 (all

    Testing the Relation Between the Local and Cosmic Star Formation Histories

    Get PDF
    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF); typically it is assumed that the IMF is a smooth function which is constant in time. We show how to test directly the compatibility of all these assumptions, by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggests that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail, and improvements in observations which will sharpen this test.Comment: 14 pages in LaTeX (uses aaspp4.sty). 5 postscript figures. To appear in the Astrophysical Journa
    corecore