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ABSTRACT 

Automated visual anthropometrics produced by mobile applications are accessible and cost-

effective with the potential to assess clinically relevant anthropometrics without a trained 

technician present. Thus, the aim of this study was to evaluate the precision and agreement of  

smartphone-based automated anthropometrics against reference tape measurements. Waist and 

hip circumference (WC; HC), waist-to-hip ratio (WHR), and waist-to-height ratio (W:HT), were 

collected from 115 participants (69 F) using a tape measure and two smartphone applications 

(MeThreeSixty
®
, myBVI

®
) across multiple smartphone types. Precision metrics were used to 

assess test-retest precision of the automated measures. Agreement between the circumferences 

produced by each mobile application and the reference were assessed using equivalence testing 

and other validity metrics. All mobile applications across smartphone types produced reliable 

estimates for each variable with ICCs ≥0.93 (all p<0.001) and RMS-%CV between 0.5%-2.5%. 

PE for WC and HC were between 0.5cm-1.9cm. WC, HC, and W:HT estimates produced by 

each mobile application demonstrated equivalence with the reference tape measurements using 

5% equivalence regions. Mean differences via paired t-tests were significant for all variables 

across each mobile application (all p<0.050) showing slight underestimation for WC and slight 

overestimation for HC which resulted in a lack of equivalence for WHR compared to the 

reference tape measure. Overall, the results of our study support the use of WC and HC estimates 

produced from automated mobile applications, but also demonstrates the importance of accurate 

automation for WC and HC estimates given their influence on other anthropometric assessments 

and clinical health markers.  
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INTRODUCTION 

Obesity is rapidly increasing with disparately high rates for individuals who are of low 

socioeconomic status (SES) (1) or living in rural communities. (2,3)  Specifically, both low SES 

(4,5) and rural occupancy (6) are associated with higher rates of abdominal obesity, which is 

itself linked to a higher risk of cardiometabolic abnormalities. (7) Traditionally, abdominal 

obesity is evaluated by standard anthropometric assessments that include circumferences of the 

waist -and -hips specifically, given their association with cardiometabolic health risks (8,9) and 

mortality. (10) Nevertheless, traditional anthropometric measures lack feasibility for those 

without access to clinical care, which is concerning given that there are few alternative methods 

that can successfully provide remote and cost-effective assessments without a trained technician 

present. Therefore, the development of remote healthcare tools that can provide accurate 

anthropometric assessments without additional costs are of critical importance.  

Interestingly, the adaptations made to traditional healthcare models during the COVID-19 

pandemic may have, unintentionally, provided a potential solution to this pressing issue. At the 

onset of the pandemic, healthcare facilities were forced to find remote alternatives to providing 

clinical care. Given that the majority of US adults own a smartphone (11) with a similar 

ownership existing across more vulnerable populations, (12,13) the demand for remote 

healthcare solutions led to the swift integration of mobile healthcare models that enable patients 

with access to care regardless of limited transportation or geographical location. In fact, recent 

evidence demonstrates the feasibility of mobile healthcare interventions in a rural setting 

showing reductions in waist circumference (WC) and visceral adiposity with this approach. (14) 

Additionally, and contrary to the observations made in a traditional healthcare setting, (15) 

intention to use and satisfaction with mobile health services is inversely associated with 

perceived health status which notes its utility for individuals of poor health. However, increased 

access to communication with healthcare providers is only one facet of the total healthcare 

experience. As such, the surge in mobile healthcare use coupled with the accelerated increase in 

obesity requires parallel advancements in remote health tools, such as automated 

anthropometrics, that can conveniently assess patient health status without additional costs.  

Because virtually all smartphones can now employ high-resolution imaging through 

advances in smartphone camera technology, newly developed mobile applications can now 
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leverage machine learning to automate anthropometric assessments from as little as two self-

taken images. Furthermore, this method has recently shown to be associated with traditional 

measurement methods, (16) agree with multi-compartment body composition estimation models, 

(17) and demonstrates higher predictive ability of visceral adipose tissue compared to physical 

circumferences and other measures. (18) Thus, this methodological approach may be a potential 

solution to collecting large scale anthropometric information and improve access to health 

information for those with monetary or geographic limitations. However, the consumer-level and 

accessible nature of this method fosters continual industry competition and thus, there are several 

mobile applications that claim to produce accurate automated anthropometric evaluations from 

smartphone-based imaging. As such, there are currently no studies, to our knowledge, that have 

fully assessed the equivalence of clinically significant measures of abdominal adiposity such as 

WC, hip circumference (HC), waist-to-hip ratio (WHR), and waist-to-height ratio (W:HT) 

produced by multiple mobile applications across smartphone types to a reference measurement. 

Therefore, the purpose of this study was to determine the agreement and precision of automated 

anthropometric assessments produced by three-dimensional mobile scanning applications 

compared to a reference tape measure.  

METHODS 

Participants 

A total of 115 individuals (F: 69, M: 46) between ages 18 and 75 years were 

prospectively recruited for this cross-sectional study. Participants were excluded if they were 

younger than 18 or older than 75; were missing any limbs or part of a limb that influenced an 

accurate assessment of the primary anthropometric measures; were pregnant; trying to become 

pregnant; or breast feeding or lactating. The study took place from March 2022 through July 

2022 and was conducted according to the guidelines laid down in the Declaration of Helsinki, 

with all procedures involving human participants approved by the university ethics committee 

(IRB#21-213). Written informed consent was obtained from all participants. 
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Procedures 

Our procedures for visual body composition scanning have been previously reported (19) 

but are summarized below. Participants reported to the laboratory after abstention from food, 

beverages, supplements/medication, and exercise for ≥8 h. Upon arrival participants were asked 

to remove any external accessories (jewelry, shoes, etc.) and/or loose clothing and underwent 

measurements of height collected by a digital stadiometer (SECA, Hamburg, Germany), weight 

collected by a calibrated digital scale (SECA, Hamburg, Germany), and WC and HC collected 

using an aluminum tape measure. Following tape measurements, participants were lead to a 

specific area of the laboratory to complete the smartphone-based assessments. For scanning on 

each mobile application, participants were instructed to wear minimal form-fitting clothing. For 

example, female participants were instructed to wear a sports bra and tight-fitting shorts/leggings 

and male participants were instructed to wear compression shorts/tights only. Higher-waisted 

shorts that covered the participants bellybutton were altered to expose the participants entire 

abdominal region to the smartphone camera. Participants with long hair were instructed to tie 

their hair up so that no hair was present below the shoulder line.  

Reference Tape Measurements 

Traditional WC and HC were collected by an aluminum tape measure and these 

measurements were used as, or used to calculate, all reference variables for this study. Because 

there are no standardized measurement sites for WC and HC across mobile applications, 

estimates of WC and HC from these applications could be generated from different locations at 

or around the waist and hip regions. Therefore, the reference tape measurements were 

standardized to specific locations, where the reference WC was measured at the level of the iliac 

crest (20) and the reference HC was measured at the widest portion of the lateral hips (9) given 

the ease in the visual detection of pronounced or distinct body areas during the landmarking 

procedures of smartphone-based imaging. In addition, the American Heart Association waist 

circumference risk classifications are based off measurements collected at the level of the iliac 

crest. (21) All tape measurements were conducted by the same two investigators for all 

participants. WC and HC were used to produce a WHR by dividing WC by HC and 

measurements of W:HT by dividing WC by height collected from the digital stadiometer. For 

WHR measurements, the first WC was divided by the first HC and the second WC by the second 
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HC. Because height was measured a single timepoint, both the first and second WC were divided 

by the same height measurement. All measurements were conducted in duplicate and averaged to 

produce a final estimate. 

Mobile Applications and Smartphone Types 

Our procedures for each smartphone application and type have been described elsewhere 

(19). Two mobile applications were used for this study which included MeThreeSixty
®
 (ME360; 

Size Stream LLC, Cary, NC, USA) and myBVI
®
 (Select Research LTD, Malvern, England). 

Because mobile applications are frequently updated under real-world circumstances, and because 

these updates are often necessary to fix unavoidable issues with the application’s performance, 

applications were updated daily prior to testing, when available. The study began with software 

version 3.3.0 (ME360Apple), 3.2.2 (ME360Samsung), and 3.0.0 (myBVI
®
) and ended using versions 

3.4.2 (both ME360) and 3.1.2 (myBVI
®

), respectively. Further, two different smartphones were 

used for this study to compare the precision and agreement of the applications across smartphone 

types. The smartphones used in this study included an iPhone
®
 12 Pro (Apple

®
 Inc., Cupertino, 

CA, USA) and a Samsung Galaxy
®

 S21+ (Samsung
®

 Group, Suwon, South Korea). Assessments 

using the iPhone
®
 were conducted using the same software version for the entirety of the study 

(iOS 15.0.1) but due to Samsung’s
®
 forced security updates, multiple software versions were 

employed for this smartphone specifically (One UI version 3.1, 4.0, and 4.1 and Android
®
 

version 11 and 12). All images for ME360 were collected using the front facing camera from 

both smartphones whereas images from myBVI
®

 were collected using the front facing camera 

from the iPhone
®
 only due to compatibility issues between myBVI

®
 and Samsung Galaxy

®
.  

 

Anthropometric Assessment Protocol for the Mobile Applications  

Our procedures for collecting smartphone-based body composition estimates have been 

previously reported (19). To perform the assessments for each mobile application, participants 

were taken to a designated area of the laboratory that had did not have any objects or light behind 

the participants’ back. All images were taken in front of a gray vinyl wall in this designated area 

and all external windows were covered so that no other background or external light source 

polluted the scanning region. The smartphone was positioned at a standardized distance from the 
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participant’s mid-foot unless instructed otherwise by the application and a standardized height 

for all participants using a stationary tripod with adjustable angle settings. The smartphone order 

was assigned randomly for each participant. Each participant’s personal information (age, sex, 

height, and weight) was uploaded into the application before testing commenced. The 

smartphone was locked into place at an angle determined appropriate by the mobile application. 

Once the smartphone and the participant were situated appropriately, participants were asked to 

stand in two positions, in accordance with the manufacturer guidelines, while images were 

collected. For the first image, participants faced the camera and stood with arms and feet 

positioned away from the torso. For the second image, participants were instructed to turn to 

their profile with either their left (ME360) or right (myBVI
®

) shoulder facing the camera, face 

forward, extend the elbows completely, and place their hands against their lateral thigh while 

images were collected. All assessments were conducted in duplicate and subjectively inspected 

for quality to ensure there were no errors were apparent during landmarking procedures. WC and 

HC from ME360 were provided directly by the mobile application. WHRME360 was calculated as 

WCME360 divided by HCME360. Because myBVI
®

 provides WHR and W:HT, but not WC or HC, 

WCmyBVI was calculated as height from the stadiometer multiplied by W:HTmyBVI. The newly 

produced WCmyBVI was divided by WHRmyBVI to produce HCmyBVI. Because myBVI
® 

requires the 

user to round their height, and because ME360W:HT used height measured by stadiometer, we 

calculated W:HTmyBVI by dividing WCmyBVI from the stadiometer height. For WHR 

measurements from each application, the first automated WC was divided by the first automated 

HC and the same was done for the second scans. Similar to the reference method, both the first 

and second automated WC were divided by the same height measurement. All measurements 

were conducted in duplicate and averaged to produce a final estimate. 

 

Statistical Analysis 

We conducted a non-directional power analysis to determine the sample size necessary to 

detect significant differences using a paired-samples t-test (the primary statistical analysis for 

determining group mean differences). Prior to analysis we determined ±4.0 cm to be a 

meaningful mean difference (MD) and thus, using a MD of 4.0 ± 6.0 and an α = 0.05 it was 

determined that 20 participants were necessary to observe at least 80% power. All outcome 
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variables were normally distributed as assessed by Shapiro-Wilk and visual inspection of Q-Q 

plots. Means and 95%CI for each device were calculated for WC, HC, WHR, and W:HT and the 

MD and 95%CI for each variable were calculated as the mobile application in question minus the 

reference. Test-retest precision of each anthropometric assessment were assessed using intraclass 

correlation coefficients (ICC) with two-way, random effects, and absolute agreement. Precision 

was also measured using precision error (PE) and root mean square coefficient of variation 

(RMS-%CV). For ME360, precision metrics were used to determine precision between 

smartphone types using the first scan from each smartphone. Because WHR and W:HT are 

unitless, PE was not calculated for these variables. A device error resulted in one participant 

(n=1) missing a single scan from one smartphone (Samsung
®

) for ME360. Therefore, 114 

participants were used to determine precision and 115 participants were used to assess 

agreement. An average of the two scans for each mobile application were used to determine 

agreement and only one scan was used for the participant with a missing scan. Equivalence 

testing was used to determine equivalence with the reference tape measurements for WC, HC, 

WHR, and W:HT using 5% equivalence regions. Additionally, and because WC is often used to 

assess abdominal obesity for the evaluation of cardiometabolic health risk, the percentage of 

correct abdominal obesity classifications according to the guidelines put forth by the American 

Heart Association (≥ 88 cm for females; ≥ 102 cm for males) are presented for each mobile 

assessment. (21) Agreement with the reference method was also assessed by separate paired 

samples t test, Pearson correlation coefficients, root mean square error (RMSE=√∑(predicted-

actual)
2
/n) and standard error of the estimate (SEE). Individual accuracy was assessed using the 

methods of Bland and Altman (22) to determine the 95% limits of agreement (LOA) and 

regression techniques were used to determine proportional biases. Subgroup analyses were 

conducted for sex and racial differences. For race, analyses were conducted for non-Hispanic 

white and non-Hispanic Black/African-American (B/AA) individuals (Table 1). Data from other 

racial and ethnic groups were included in the complete sample analyses only. Anthropometric 

differences between groups were assessed by independent samples t-test. Statistical significance 

was accepted at p < 0.05. Given the large sample size and observational nature of the study, a 

power analysis was not conducted. Data was analyzed using the TOSTER package (23) in R 

version 4.1.2, IBM SPSS version 27, and Microsoft Excel version 16. 
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RESULTS 

Participant characteristics are reported as mean and the 95% confidence interval (95%CI) 

or as a percentage of the total for each column (Table 1). 

Precision Analysis 

Results of the precision analysis are presented in Table 2. For precision, all ICCs, 

including assessments between smartphone types, ranged from 0.933 to 0.998 (all p < 0.001). 

For WC and HC, ME360Apple produced the lowest PE and RMS-%CV followed by tape 

measurements and ME360Samsung. myBVI
®

 had the largest PE and RMS-%CV for both WC and 

HC across applications. Overall, precision was lower between smartphone types for WC and HC 

produced by ME360Apple x Samsung. RMS-%CV for WHR was lowest for ME360Apple (0.70%) 

which was slightly lower than ME360Samsung (0.80%), but both ME360WHR estimates had lower 

RMS-%CV than those conducted by tape measurement (1.05%). myBVI
®

 had the highest RMS-

%CV for WHR (2.43%) which was also higher than the RMS-%CV between smartphone types 

for ME360Apple x Samsung (1.98%).  

Agreement Analysis 

Results of the agreement analysis for the total sample are presented in Table 3. Overall, 

the number of correct abdominal obesity classifications for each mobile application were 103 

(89.6%) for ME360Apple, 104 (90.4%) for ME360Samsung, and 106 (92.2%) for myBVI
®

. Of the 

incorrect classifications, both ME360Apple (12 incorrect) and myBVI
®

 (9 incorrect) incorrectly 

classified participants as having abdominal obesity on three occasions with the remaining 

incorrectly classifying participants as not having abdominal obesity. ME360Samsung incorrectly 

classified participants (11 incorrect) as having abdominal obesity on five occasions with the 

remaining incorrectly classifying participants as having abdominal obesity. 

Paired t-tests revealed that all variables produced by the mobile applications differed 

significantly from the reference tape measurement for the total sample. WC was slightly 

underestimated by each mobile application (all MD: ≤ -2.5 cm, p < 0.050) relative to the 

reference method for each application. Conversely, HC was slightly overestimated across each 

mobile application relative to the reference method with myBVI
® 

demonstrating the lowest MD 

(1.9 cm) followed by ME360 with negligible differences between smartphone types (all p < 
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0.050). MD for WHR and W:HT were similar across devices. Despite significantly different 

MD, equivalence testing revealed that all devices demonstrated equivalence to the reference 

method using a 5% equivalence region for WC, HC, and W:HT (Figure 1, Table 3). The slight 

underestimation of WC and the slight overestimation of HC resulted in a non-significant 

equivalence test for WHR. ME360 demonstrated the highest RMSE for WC (±6.5 cm for each) 

but the lowest RMSE for HC (±4.7 to ±5.1 cm). RMSE for WHR and W:HT were similar across 

applications. 

Results for the Bland-Altman analysis for the total sample are displayed in Table 3 and 

illustrated in Figure 2. LOA ranged from ±9.0 to ±12.4 cm for WC and from ±6.7 to ±10.7 cm 

for HC. For WHR and W:HT, LOA were similar across applications. Significant proportional 

bias was observed for WC estimates produced by ME360 but not myBVI
®

. Conversely, 

significant proportional bias was observed for HC estimates produced by all methods. 

Sex Differences in Agreement 

Agreement analysis by sex groups are presented in Table 4. When stratified by sex, there 

were no significant differences between the WC estimates produced by each device and the 

reference method for males (all p > 0.050); however, WC was significantly underestimated for 

females across all devices (all p < 0.001). Significant overestimations of HC were observed for 

both males and females using ME360 (p < 0.001) but only for males using myBVI
®
 (p < 0.001). 

WHR was significantly underestimated for both males and females across all applications (all p 

< 0.05). For WC, RMSE were lower for males across all devices. RMSE for HC estimates were 

negligible between males and females using ME360 but were substantially higher for males 

using myBVI
®

. RMSE for WHR were similar between males and females other than WHR 

estimates produced by ME360Apple which, for females, which was more than double that of 

males.  

Results for the Bland-Altman analysis by sex group are displayed in Table 4. LOA 

ranged from ±6.6 to ±12.9 cm for WC and were smaller in males across all devices. LOA ranged 

from ±6.5 to ±10.1 cm for HC and were smaller in females across all devices, albeit similar for 

ME360. For WHR and W:HT, LOA were similar between males and females although all LOA 

were slightly lower for males. Significant proportional biases were observed for WC estimates 

produced by ME360 (all p < 0.001), but not myBVI® (both p > 0.050) and were similar between 
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males and females. Significant proportional biases were observed for HC estimates produced by 

myBVI
® 

 and were similar between males and females (both p < 0.050). For HC produced by 

ME360, no proportional bias was observed for males, but was observed for females using 

ME360Apple (p < 0.010) but not ME360Samsung (p = 0.058). Significant proportional biases were 

observed for WHR produced by ME360 in both males and females (all p < 0.050) but not for 

WHR produced by myBVI
® 

(p < 0.050). 

 

Racial Differences in Agreement 

Agreement analysis by the race groups evaluated in this study are presented in Table 5. 

WC estimates from ME360Apple, but not ME360Samsung, were significantly underestimated for 

both White and B/AA participants (p < 0.010). Although non-significant, the MD for WC 

produced by ME360Samsung for B/AA participants was more than double the MD for White 

participants. myBVI
®

 significantly underestimated WC for White participants (p < 0.001) but not 

B/AA participants (p = 0.08). HC estimates from each application were all significantly 

overestimated (all p < 0.050); however, MD for HC estimates were markedly higher for B/AA 

participants compared to White participants. WHR estimates were significantly underestimated 

for all applications (all p < 0.001) and were similar between White and B/AA participants. For 

WC, RMSE were similar between White and B/AA participants across devices; however, RMSE 

for HC were substantially higher for B/AA participants across applications. RMSE for WHR and 

W:HT were similar between White and B/AA participants across applications. 

Results for the Bland-Altman analysis by race are displayed in Table 5. LOA ranged 

from ±9.0 to ±13.4 cm for WC and were similar for White and B/AA participants. For HC, LOA 

ranged from ±5.5 to ±11.9 and were noticeably higher for B/AA participants for each device. For 

WHR and W:HT, LOA were similar for White and B/AA participants. Significant proportional 

bias was observed for WC and W:HT estimates produced by ME360 (all p < 0.050) but not 

myBVI
® 

which were similar for White and B/AA participants. For HC, significant proportional 

bias was observed across all devices in White participants (p < 0.010) but only for myBVI
® 

in 

B/AA participants (p = 0.024); however, coefficients for each device were similar between 

groups. There was no significant proportional bias observed for WHR estimates across devices, 

https://doi.org/10.1017/S0007114523000090  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114523000090


Accepted manuscript 

although the coefficients for WHR produced by ME360 were non-existent for White participants 

and high for B/AA participants. 

DISCUSSION 

While traditional tape measurements are considered to be cost effective and accessible, 

there are questions regarding their social acceptance and reliability, (24) particularly for those 

with overweight or obesity. (25) As such, this study sought comprehensively evaluate the 

precision and agreement of automated and clinically significant anthropometric variables across 

multiple mobile applications, and smartphones, against a reference tape measurement. The 

principle findings were 1) all variables produced by each mobile application and between 

smartphones exhibited acceptable precision which were comparable with tape measurements; 2) 

WC, HC, and W:HT from all mobile applications demonstrated equivalence with tape 

measurements; however, WC was slightly underestimated whereas HC was slightly 

overestimated; 3) the slight under- and overestimations for WC and HC were small enough to 

demonstrate equivalence, but resulted in non-equivalence for WHR across all automated 

methods; 4) there were no differences between WC produced by the automated methods and the 

reference in males, but WC was significantly underestimated across all applications in females; 

and 5) some variation existed across applications, but all variables demonstrated slightly lower 

agreement for B/AA participants compared to White participants which may be a product of the 

weight status differences between groups or demographics of the populations used for method 

development. Overall, the results of our study support the use of WC and HC estimates produced 

from automated mobile applications, but demonstrates the importance of accurate automation for 

WC and HC estimates given their influence on other anthropometric assessments and clinical 

health markers.  

First, each mobile application used in our study demonstrated acceptable precision for all 

automated assessments. There was a slight drop-off in precision when estimates were compared 

between smartphone types; however, precision remained within an acceptable range. While there 

are only a few studies have evaluated the precision of automated anthropometrics using mobile 

applications, (16,26) there is contention regarding the precision of traditional tape measurements 

citing inaccuracies between self-measured and professionally measured assessments (27) and 

measurements for those of higher weight status. (27,28) Another method shown to produce 
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reliable digital anthropometrics is three-dimensional (3D) optical scanning. (29) However, three-

dimensional scanners are generally unavailable for simple but important circumference measures 

in clinical practice, especially for those in lower SES or rural areas. Thus, the limitations of other 

methods highlight the need for precise estimates that are both accessible and cost-effective. In 

our study, all automated anthropometrics produced precision estimates that were similar to the 

tape measurements performed in our study (which were conducted professionally) and those 

produced by three-dimensional scanning in others. (9,29) Interestingly, the ME360Apple 

application produced better precision estimates than those collected via tape measure with 

ME360Samsung only marginally lower. It is possible that these small differences are due to 

differences in the developmental software (i.e., iOS or Android
®
), where initial mobile 

applications are built for a specific device (i.e., iPhone
®
 or Samsung

®
) with operating systems 

that require a particular coding language. (30) Despite this, all ICCs were > 0.930 and PE were 

all ≤ 2.0 cm. Considering that this degree of precision was produced simply from two two-

dimensional pictures on highly accessible mobile applications, it is plausible that these 

applications be considered reliable and comparable to traditional methods.  

 Several investigations have evaluated the agreement between automated anthropometrics 

from a mobile application and traditional tape measurements and have demonstrated 

considerable variation, (16,26,31,32) likely due to the different mobile applications employed in 

each study. Overall, WC, HC, and W:HT across all mobile applications in our study 

demonstrated equivalence to our reference method; however, there were slightly significant 

under- and overestimations for WC and HC, respectively, for each application. These bi-

directional biases, where an underestimated WC was divided by a larger overestimated HC, 

resulted in significant underestimation of WHR for each application that did not demonstrate 

equivalence. So, while biases for WC and HC were relatively small, these small differences 

manifested in discrepancies across other variables. This relationship is also reflected in our 

results for W:HT, where all mobile applications underestimated W:HT as an extension of an 

underestimated WC. These small inconsistencies for WC and HC are problematic considering 

that WC and HC estimates are commonly used in other anthropometric screening tools to predict 

several health risks. (10,33) This is especially concerning considering the proportional biases and 

large LOA observed in our study. Specifically, we found that both ME360 applications 

demonstrated significant proportional bias for WC, where WC was underestimated to a greater 

https://doi.org/10.1017/S0007114523000090  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114523000090


Accepted manuscript 

degree in those with larger average WC. Significant proportional bias was observed for HC 

produced by both ME360 applications, but these biases were relatively small and much smaller 

than the proportional biases produced for WC using the same application. Because participants 

with a higher average WC had greater underestimations of WC without similar underestimations 

of HC, WHR was underestimated using this application. Interestingly, there was no proportional 

bias for WC using myBVI
®

; however, HC produced by myBVI
®

 demonstrated significant 

proportional bias, where HC was overestimated for those at larger average HC. Similar to 

ME360, albeit in differing directions, the overestimation of HC without simultaneous 

overestimations in WC led to underestimations of WHR. Therefore, while automated WC and 

HC estimates from a mobile application may demonstrate equivalence, those planning to employ 

these estimates as a part of a larger screening battery should do so with caution; although WC 

estimates produced by each mobile application did show utility in correctly determining 

abdominal obesity classification; a common cardiometabolic health risk assessment.  

 There are several issues that may explain our aforementioned results. First, the artificial 

intelligence used to develop each application is dependent upon the method used to train the 

application. For instance, if the mobile application was trained by a 3D scanner it is possible that 

comparisons to a tape measurement would result in lower levels of agreement. However, many 

mobile applications are trained by both 3D scanning and traditional tape measures, and recent 

investigations show agreement in body circumferences assessed by tape measurements, 3D 

scanners, and mobile applications. (16) Typically, these studies determine agreement by 

comparing automated measures to tape measurements taken at sites specifically defined by the 

mobile application. (16,31) While this methodological approach may result in better agreement, 

it may also limit real-world application given that self- or professionally-measured 

circumferences may be taken from considerably different locations than from those suggested by 

the mobile application. Moreover, measurement sites may be markedly different between mobile 

applications making them difficult to compare. Therefore, to determine their “real-world” 

performance we standardized the location of each tape measurement. It should be noted, 

however, that while the automated WC and HC were equivalent to tape measurements, this is 

specific to the performance of our investigators and the location in which our tape measurements 

were taken and thus, estimates taken by individual users, by other professionals, or at different 

locations may lead to differing results. 
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 In addition to what has been previously suggested, our results may also be explained by 

our sex and race comparisons. For males, there were no significant differences between the WC 

measures and the reference for any mobile application. In fact, MD in WC for males were all ≤ -

0.6 cm which is comparable to the results for both males and females produced by Nana et al. 

(31) using a single mobile application. Conversely, WC was significantly underestimated by ≥ -

3.0 cm across applications for females. Size differences between our female participants and 

those in the study by Nana et al. (31) may explain the differences between studies, where our 

female participants had substantially higher weight, WC, and HC. However, male participants in 

our study were also much larger. As previously suggested by Neufeld et al. (32), it is possible 

that differences in clothing between male and female participants, combined with the larger size 

of our participants, may explain our findings. Specifically, male participants wore only 

compression shorts/tights whereas female participants wore tights and a sports bra. It is common 

for females to wear high-waisted tights that cover a significant area (and often the majority) of 

the abdomen where the automated WC would be collected. Although steps were taken to 

alleviate this in our study, the automated landmarking procedures used by each mobile 

application may be altered when a considerable amount of abdominal mass is covered. 

Additionally, we observed that clothing worn by females was often tighter fitting than clothing 

worn by males. The tightness of the clothing, especially in female participants of larger body 

size, may alter the natural body shape in areas around the abdomen. It is also possible that the 

discrepancies in WC between the automated assessments and the reference in females was due to 

the inherent difficulty in measuring the female waist. As you descend the body’s vertical axis, 

the variation in WC along that axis is more exaggerated in females compared to males as a result 

of normal adult female body shape. (34,35) Thus, it is possible that these issues can introduce 

error into the automated measurement process as each application attempts to detect specific 

landmarks for its WC estimate. 

 The sex differences in HC for myBVI
®
 may also explain a number of our other findings. 

For males, myBVI
®

 significantly overestimated HC which was not observed for females. 

Interestingly, the majority of our male participants had either overweight or obesity, in addition 

to larger WC and HC, compared to our female participants. Considering that the proportional 

biases for HC from myBVI
®
 were nearly identical between sexes, it is more likely that the larger 

WC and weight status contributed to these differences. It is well known that males tend to 
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deposit more fat in the anterior abdominal area whereas females tend to deposit more fat in the 

gluteal-femoral region (36) leading to a larger WC for males. At higher degrees of overweight 

and obesity, the excessive accumulation of fat in the abdominal area is exposed to gravity and 

may extend well into the pubic region. Given that the pubic area is within the normal assessment 

region for HC, it is possible that the larger abdominal fat mass in male participants extended into 

the HC area for the automated assessments whereas tape measurements could avoid this 

interference. This potential discrepancy can also be observed in our comparisons by race. B/AA 

participants had significantly higher weight, WC, and HC compared to their White counterparts 

and 50% of our B/AA participants had obesity, with all but one of our participants with severe 

obesity being B/AA males (the one participant was a B/AA female). Further, HC was 

overestimated to a greater degree for B/AA participants but without differences in proportional 

biases. Given the large differences in weight and WC and the lack of proportional bias in HC in 

this group, it is possible that at the extremes of abdominal adiposity, abdominal fat mass may 

impede the anterior area of the HC measurement resulting in an automated HC measurement that 

accounts for a portion of the waist, leading to HC overestimation. The potential impedance of the 

abdomen in larger individuals, coupled with the intrinsically larger distributions of fat in the 

gynoid region for B/AA individuals, (37) could result in larger measurement errors that may be 

exaggerated for B/AA males.   

 In conclusion, automated anthropometrics produced by two dimensional pictures from 

mobile applications are cost-effective and accessible tools that can be used to collect clinically 

significant anthropometric information. Automated anthropometrics from mobile applications 

demonstrate high levels of precision regardless of the smartphone used. Mobile anthropometrics 

also demonstrate agreement with traditional tape measurements (via equivalence testing) for WC 

and HC estimates. However, slight deviations in WC and HC, which may be due to technical 

issues that are exaggerated in estimates for female and B/AA participants, may lead to 

inaccuracies for other measurements such as WHR. As such, these data support the overall use of 

this technique for estimates of WC and HC, but individuals should include these data in 

comprehensive health assessments with caution given the range of individual error and over-and- 

underestimations. Despite this, WC estimates produced by each mobile application demonstrate 

utility in assessing abdominal obesity. These findings also support the potential use of this 

assessment method in prospective studies, where participants could self-assess across an 
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intervention without the need for additional laboratory visits. However, future research 

examining the accuracy of self- and at-home assessments are necessary in addition to studies 

examining accurate assessment over time.  
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Table 1. Participant Characteristics 

N=115  Total  Male Female 

Sex   46 (40.0%) 69 (60.0%) 

Race White 83 (72.2%) 31 (67.4%) 52 (75.4%) 

 Black/AA 28 (24.3%) 14 (30.4%) 14 (20.3%) 

 Asian 4 (3.5%) 1 (2.2%) 3 (4.3%) 

Ethnicity Hispanic 7 (6.1%) 2 (4.3%) 5 (7.2%) 

Anthropometry Age (y) 29.4 (27.1, 31.7) 26.5 (23.8, 29.1) 31.3 (28.0, 34.6)
c
 

 Height (cm) 170.2 (168.4, 172.0) 178.0 (175.5, 180.4) 165.0 (163.5, 166.5)
a
 

 Weight (kg) 80.4 (76.3, 84.4) 94.3 (87.4, 101.1) 71.07 (67.5, 74.7)
a
 

 BMI (kg/m
2
) 27.5 (26.2, 28.7) 30.2 (27.9, 32.5) 25.6 (24.4, 26.9)

b
 

 Waist (cm) 91.4 (88.5, 94.3) 96.2 (91.2, 101.3) 88.2 (84.9, 91.6)
b
 

 Hip (cm) 103.0 (101.7, 106.1) 106.2 (102.3, 110.5) 102.4 (99.8, 105.0) 

 Waist:Hip 0.88 (0.86, 0.89) 0.90 (0.89, 0.92)  0.86 (0.84, 0.88)
b
 

 Waist:Height 0.54 (0.52, 0.56) 0.54 (0.51, 0.57) 0.54 (0.51, 0.57) 

BMI Classification ≥ 40 kg/m
2
 5 (4.3%) 4 (8.7%) 1 (1.4%) 

 30 – 39.9 kg/m
2
 23 (20.0%) 11 (23.9%) 12 (17.4%) 

 25 – 29.9 kg/m
2
 39 (33.9%) 20 (43.5%) 19 (27.5%) 

 < 25 kg/m
2
 48 (41.7%) 11 (23.9%) 37 (53.6%) 

N=104  White (n=76) Black (n=28)  

Anthropometrics Height (cm) 170.5 (168.4, 172.6) 171.2 (167.0, 175.5)  

 Weight (kg) 77.1 (73.4, 80.8) 94.1 (82.0, 106.1)
c
  

 BMI (kg/m
2
) 26.3 (25.2, 27.4) 31.8 (28.0, 35.7)

b
  

 Waist (cm) 89.4 (86.6, 92.3) 99.9 (91.2, 108.6)
c
  

 Hip (cm) 102.5 (100.3, 104.7) 109.5 (103.1, 116.1)
c
  

 Waist:Hip 0.87 (0.86, 0.89) 0.91 (0.87, 0.94)
c
  

 Waist:Height 0.53 (0.51, 0.54) 0.59 (0.53, 0.64)
c
  

BMI Classification ≥ 40 kg/m
2
 0 (0.0%) 5 (17.9%)  

 30 – 39.9 kg/m
2
 14 (18.4%) 9 (32.1%)  

 25 – 29.9 kg/m
2
 31 (40.8%) 4 (14.3%)  

 < 25 kg/m
2
 31 (40.8%) 10 (35.7%)  

AA, African-American; BMI, body mass index. 
a
 statistically significant at p <0.001; 

b
 

statistically significant at p <0.010; 
c
 statistically significant at p <0.050 
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Table 2. Precision analysis of smartphone-based automated anthropometrics  

N=114  ICC
a 

RMS-%CV PE
b
 

WC Tape Measure 0.998 0.78 0.63 

 ME360Apple 0.998 0.69 0.54 

 ME360Samsung 0.996 1.11 0.87 

 myBVI 0.995 1.43 1.12 

 ME360Apple x Samsung 0.979 2.54 1.91 

HC Tape Measure 0.997 0.70 0.65 

 ME360Apple 0.998 0.54 0.51 

 ME360Samsung 0.994 0.95 0.90 

 myBVI 0.982 2.07 1.91 

 ME360Apple x Samsung 0.979 1.72 1.59 

WHR Tape Measure 0.984 1.05  

 ME360Apple 0.992 0.70  

 ME360Samsung 0.991 0.80  

 myBVI 0.933 2.43  

 ME360Apple x Samsung 0.952 1.98  

W:HT Tape Measure/Stadiometer 0.997 0.79  

 ME360Apple 0.997 0.71  

 ME360Samsung 0.994 1.12  

 myBVI 0.995 1.42  

 ME360Apple x Samsung 0.978 2.51  

HC: hip circumference; ICC: intraclass correlation coefficient (two-way random effects, absolute 

agreement, single measurement); PE: precision error; RMS-%CV: root mean square coefficient 

of variation (%); WC: waist circumference; WHR: waist-to-hip ratio; W:HT: waist-to-height 

ratio. 
a
 p < 0.001 for all measurements; 

b
 measurements are in cm 
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Table 3. Agreement between smartphone-based automated anthropometrics and reference tape measurements 

N=115  Mean (95%CI)
a
  MD (95%CI)

a
 EQ RMSE 95% LOA SEE β R

2
 

WC Tape Measure 91.4 (88.5, 94.4)        

 ME360Apple 89.1 (86.6, 91.7) -2.3 (-3.4, -1.2)
b
 Y 6.5 11.9 2.4 -0.15

b
 0.86 

 ME360Samsung 89.9 (87.4, 92.4) -1.6 (-2.7, -0.4)
d
 Y 6.5 12.4 2.6 -0.15

b
 0.84 

 myBVI 88.9 (85.9, 91.9) -2.5 (-3.4, -1.7)
b
 Y 5.2 9.0 1.5 0.03 0.92 

HC Tape Measure 103.9 (101.7, 

106.1) 

       

 ME360Apple 107.0 (105.0, 

109.1) 

3.1 (2.5, 3.8)
b
 Y 4.7 6.8 1.4 -0.07

d
 0.91 

 ME360Samsung 107.6 (105.5, 

109.7) 

3.7 (3.1, 4.4)
b
 Y 5.1 6.7 1.5 -0.06

d
 0.92 

 myBVI 105.8 (103.1, 

108.4) 

1.9 (0.87, 2.9)
b
 Y 5.8 10.7 2.1 0.20

b
 0.87 

WHR Tape Measure 0.88 (0.86, 0.89)        

 ME360Apple 0.83 (0.82, 0.84) -0.05 (-0.06, -0.04)
b
 N 0.07 0.11 0.05 -0.06 0.48 

 ME360Samsung 0.83 (0.82, 0.85) -0.04 (-0.05, -0.03)
b
 N 0.07 0.11 0.05 -0.08 0.47 

 myBVI 0.84 (0.83, 0.85) -0.04 (-0.05, -0.03)
b
 N 0.06 0.09 0.03 -0.07 0.66 

W:HT Tape 

Measure/Stadiometer 

0.54 (0.52, 0.56)        

 ME360Apple 0.52 (0.51, 0.54) -0.014 (-0.021, -0.008)
b
 Y 0.04 0.07 0.01 -0.17

d
 0.86 

 ME360Samsung 0.53 (0.51, 0.54) -0.009 (-0.016, -0.002)
c
 Y 0.04 0.07 0.02 -0.18

d
 0.85 

 myBVI 0.52 (0.51, 0.54) -0.015 (-0.020, -0.010)
b
 Y 0.03 0.05 0.01 0.01 0.92 

95%CI: 95% confidence interval; β: regression coefficient produced from linear regression as used to assess proportional bias; EQ: 

equivalence; HC: hip circumference; LOA: limits of agreement; MD: mean difference; RMSE: root mean square error; SEE: standard 

error of the estimate; WC: waist circumference; WHR: waist-to-hip ratio; W:HT: waist-to-height ratio. 
a
 Expressed as mean (95% 

confidence interval); 
b
 Indicates statistical significance at p < 0.001; 

c
 indicates statistical significance at p <  0.010; 

d
 indicates 

statistical significance at p <0.05 
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Table 4. Agreement between smartphone-based automated anthropometrics and reference tape measurements by sex groups 

N=115  Males (n=46) Females (n=69) 

  MD (95%CI)
a
 RMSE LOA β R

2
 MD (95%CI) RMSE LOA β R

2
 

WC ME360Apple -0.3 (-1.7, 1.2) 4.8 9.6 -0.20
b
 0.94 -3.7 (-5.2, -2.1)

b
 7.4 12.6 -0.22

b
 0.80 

 ME360Samsung 0.6 (-1.0, 2.2) 5.3 10.4 -0.22
b
 0.93 -3.0 (-4.6, -1.4)

b
 7.2 12.9 -0.21

b
 0.78 

 myBVI -0.4 (-1.3, 0.6) 3.3 6.6 -0.01 0.93 -4.0 (-5.1, -2.8)
b
 6.2 9.3 0.01 0.89 

HC ME360Apple 2.6 (1.5, 3.7)
b
 4.6 7.2 -0.02 0.92 3.5 (2.7, 4.3)

b
 4.8 6.5 -0.11

c
 0.91 

 ME360Samsung 3.5 (2.4, 4.5)
b
 5.1 6.8 -0.03 0.93 3.9 (3.1, 4.7)

b
 5.2 6.7 -0.08 0.90 

 myBVI 5.9 (4.4, 7.4)
b
 6.0 10.1 0.14

d
 0.89 -0.8 (-1.7, 0.1) 3.8 7.4 0.13

c
 0.91 

W:Hip ME360Apple -0.02 (-0.03, -0.01)
c
 0.03 0.08 -0.30

d
 0.51 -0.06 (-0.08, -0.05)

b
 0.07 0.11 -0.25

d
 0.44 

 ME360Samsung -0.02 (-0.03, -0.01)
c
 0.07 0.11 -0.35

c
 0.58 -0.06 (-0.07, -0.04)

b
 0.06 0.12 -0.26

d
 0.40 

 myBVI -0.05 (-0.06, -0.03)
b
 0.06 0.08 0.07 0.60 -0.03 (-0.04, -0.02)

b
 0.04 0.09 -0.10 0.62 

W:Height ME360Apple -0.00 (-0.01, 0.01) 0.03 0.05 -0.17 0.95 -0.02 (-0.03, -0.01)
b
 0.04 0.08 -0.20

c
 0.79 

 ME360Samsung 0.00 (-0.01, 0.01) 0.03 0.06 -0.20
b
 0.94 -0.02 (-0.03, -0.01)

c
 0.04 0.08 -0.20

c
 0.78 

 myBVI -0.00 (-0.01, 0.01) 0.02 0.04 -0.02
b
 0.97 -0.02 (-0.03, -0.02)

b
 0.04 0.06 0.01 0.88 

95%CI: 95% confidence interval; β: regression coefficient produced from linear regression as used to assess proportional bias; EQ: 

equivalence; HC: hip circumference; LOA: limits of agreement; MD: mean difference; R
2
: r-squared; RMSE: root mean square error; 

SEE: standard error of the estimate; WC: waist circumference; WHR: waist-to-hip ratio; W:HT: waist-to-height ratio. 
a
 Expressed as 

mean (95% confidence interval); 
b
 Indicates statistical significance at p < 0.001; 

c
 indicates statistical significance at p <  0.010; 

d
 

indicates statistical significance at p <0.05 
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Table 5. Agreement between smartphone-based automated anthropometrics and reference tape measurements between White and 

Black/African American participants 

N=104  White (n=76) Black/African American (n=28) 

  MD (95%CI)
a
 RMSE LOA β R

2
 MD (95%CI) RMSE LOA β R

2
 

WC ME360Apple -1.8 (-3.2, -0.5)
c
 6.1 11.5 -0.14

d
 0.77 -3.5 (-6.1, -0.9)

d
 7.4 13.1 -0.18

c
 0.93 

 ME360Samsung -1.0 (-2.4, 0.4) 6.3 12.2 -0.15
d
 0.75 -2.5 (-5.2, 0.1) 7.2 13.4 -0.18

c
 0.92 

 myBVI -2.7 (-3.7, -1.6)
b
 5.3 9.0 0.01 0.87 -1.6 (-3.4, 0.2) 4.9 9.2 0.02 0.96 

HC ME360Apple 2.9 (2.2, 3.5)
b
 4.1 5.9 -0.11

c
 0.90 4.2 (2.4, 6.0)

b
 6.2 9.1 -0.09 0.93 

 ME360Samsung 3.3 (2.6, 3.9)
b
 4.3 5.5 -0.11

c
 0.92 5.6 (3.8, 7.3)

b
 7.0 8.7 -0.09 0.93 

 myBVI 1.3 (0.2, 2.4)
d
 4.9 9.2 0.18

b
 0.83 4.8 (2.5, 7.2)

b
 7.7 11.9 0.14

d
 0.91 

WHR ME360Apple -0.04 (-0.05, -0.03)
b
 0.07 0.10 0.00 0.50 -0.06 (-0.08, -0.04)

b
 0.08 0.11 -0.19 0.55 

 ME360Samsung -0.04 (-0.05, -0.02)
b
 0.07 0.11 -0.00 0.48 -0.06 (-0.08, -0.04)

b
 0.08 0.10 -0.26 0.58 

 myBVI -0.04 (-0.05, -0.03)
b
 0.06 0.09 0.06 0.64 -0.05 (-0.07, -0.04)

b
 0.06 0.07 0.01 0.82 

W:HT ME360Apple -0.01 (-0.02, -0.00)
d
 0.04 0.07 -0.15

d
 0.78 -0.02 (-0.04, -0.01)

c
 0.04 0.08 -0.20

c
 0.94 

 ME360Samsung -0.00 (-0.01, 0.00) 0.04 0.08 -0.19
c
 0.75 -0.02 (-0.03, -0.00) 0.04 0.07

 
 -0.20

c
 0.92 

 myBVI -0.01 (-0.02, -0.00)
b
 0.03 0.06 -0.03 0.86 -0.01 (-0.02, -0.00) 0.03 0.05 0.01 0.95 

95%CI: 95% confidence interval; β: regression coefficient produced from linear regression as used to assess proportional bias; EQ: 

equivalence; HC: hip circumference; LOA: limits of agreement; MD: mean difference; R
2
: r-squared; RMSE: root mean square error; 

SEE: standard error of the estimate; WC: waist circumference; WHR: waist-to-hip ratio; W:HT: waist-to-height ratio. 
a
 Expressed as 

mean (95% confidence interval); 
b
 Indicates statistical significance at p < 0.001; 

c
 indicates statistical significance at p <  0.010; 

d
 

indicates statistical significance at p <0.05 
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Figure 1. Equivalence Between Smartphone-based Automated Anthropometrics and 

Reference Tape Measurements. An illustration of the equivalence between WC, HC, and WHR 

produced by each mobile application and those produced by the reference is shown. Variables 

are considered equivalent with the tape measurements when the entire 90%CI is within the 

equivalence region. 
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Figure 2. Bland-Altman Plots of Smartphone-based Automated Anthropometrics. Bland-

Altman plots are presented. Solid diagonal line: relationship between the mean difference in 

circumference estimates (y-axis) and the average of the automated and tape measurements (x-

axis). Solid horizontal line: average mean difference.  Dashed horizontal lines: 95% limits of 

agreement.  
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