9 research outputs found
Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians
<p>Abstract</p> <p>Background</p> <p><it>CYP2C9 </it>and <it>VKORC1 </it>are two major genetic factors associated with inter-individual variability in warfarin dose. Additionally, genes in the warfarin metabolism pathway have also been associated with dose variance. We analyzed Single Nucleotide Polymorphisms (SNPs) in these genes to identify genetic factors that might confer warfarin sensitivity in Indonesian patients.</p> <p>Methods</p> <p>Direct sequencing method was used to identify SNPs in <it>CYP2C9, VKORC1, CYP4F2, EPHX1, PROC </it>and <it>GGCX </it>genes in warfarin-treated patients. Multiple linear regressions were performed to model the relationship warfarin daily dose requirement with genetic and non-genetic variables measured and used to develop a novel algorithm for warfarin dosing.</p> <p>Results</p> <p>From the 40 SNPs analyzed, <it>CYP2C9 </it>rs17847036 and <it>VKORC1 </it>rs9923231 showed significant association with warfarin sensitivity. In our study population, no significant correlation could be detected between <it>CYP2C9*3, CYP2C9C</it>-65 (rs9332127), <it>CYP4F2 </it>rs2108622, <it>GGCX </it>rs12714145, <it>EPHX1 </it>rs4653436 and <it>PROC </it>rs1799809 with warfarin sensitivity.</p> <p>Conclusions</p> <p><it>VKORC1 </it>rs9923231 AA and <it>CYP2C9 </it>rs17847036 GG genotypes were associated with low dosage requirements of most patients (2.05 ± 0.77 mg/day and 2.09 ± 0.70 mg/day, respectively). <it>CYP2C9 </it>and <it>VKORC1 </it>genetic variants as well as non-genetic factors such as age, body weight and body height account for 15.4% of variance in warfarin dose among our study population. Additional analysis of this combination could allow for personalized warfarin treatment in ethnic Indonesians.</p
Review of Microfluidic Liquid–Liquid Extractors
During the last few decades, microfluidic
liquid–liquid
extractors have been developed to address the need for separating
solutes in analytical chemistry and efficiently recovering products
in microfluidic reactors. This review classifies the various microfluidic
liquid–liquid extractors into three major groups based on their
flow arrangement: stop-flow microfluidic extractors (MEs), cocurrent
MEs, and countercurrent MEs. Each group is further classified into
several subcategories based on flow pattern and/or working principle.
The review focuses on how to establish these three groups of microfluidic
liquid–liquid extractors, including the difficulties and corresponding
solutions for establishing these MEs, as well as their advantages
and disadvantages. The review ends with conclusions and the outlook
of the field
Effects of Seven-Year Fertilization Reclamation on Bacterial Community in a Coal Mining Subsidence Area in Shanxi, China
The restoration of soil fertility and microbial communities is the key to the soil reclamation and ecological reconstruction in coal mine subsidence areas. However, the response of soil bacterial communities to reclamation is still not well understood. Here, we studied the bacterial communities in fertilizer-reclaimed soil (CK, without fertilizer; CF, chemical fertilizer; M, manure) in the Lu’an reclamation mining region and compared them with those in adjacent subsidence soil (SU) and farmland soil (FA). We found that the compositions of dominant phyla in the reclaimed soil differed greatly from those in the subsidence soil and farmland soil (p < 0.05). The related sequences of Acidobacteria, Chloroflexi, and Nitrospirae were mainly from the subsided soil, whereas those of Alphaproteobacteria, Planctomycetes, and Deltaproteobacteria were mainly derived from the farmland soil. Fertilization affected the bacterial community composition in the reclaimed soil, and bacteria richness and diversity increased significantly with the accumulation of soil nutrients after 7 years of reclamation (p < 0.05). Moreover, soil properties, especially SOM and pH, were found to play a key role in the restoration of the bacterial community in the reclaimed soil. The results are helpful to the study of soil fertility improvement and ecological restoration in mining areas
Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes, as well as the formation mechanism of aggregates in reclaimed soil, to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province, China. In this study, soil samples of 0–20 cm depth were collected from four fertilization treatments of a long-term experiment started in 2008: no fertilizer (CK), inorganic fertilizer (NPK), chicken manure compost (M), and 50% inorganic fertilizer plus 50% chicken manure compost (MNPK). The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed. The results showed that the formation of >2 mm aggregates, the aggregate mean weight diameter (MWD), and the proportion of >0.25 mm water-stable aggregates (WR0.25) increased significantly after 6 and 11 years of reclamation. The concentration of organic cementing agents tended to increase with reclamation time, whereas free iron oxide (Fed) and free aluminium oxide (Ald) concentrations initially increased but then decreased. In general, the MNPK treatment significantly increased the concentrations of organic cementing agents and CaCO3, and CaCO3 increased by 60.4% at 11 years after reclamation. Additionally, CaCO3 had the greatest effect on the stability of aggregates, promoting the formation of >0.25 mm aggregates and accounting for 54.4% of the variance in the proportion and stability of the aggregates. It was concluded that long-term reclamation is beneficial for improving soil structure. The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO3