217 research outputs found

    Application of a catalytic combustion sensor (Pellistor) for the monitoring of the explosiveness of a hydrogen-air mixture in the upper explosive limit range

    Get PDF
    A new technique is presented for continuous measurements of hydrogen contamination by air in the upper explosive limit range. It is based on the application of a catalytic combustion sensor placed in a cell through which the tested sample passes. The air content is the function of the quantity of formed heat during catalytic combustion of hydrogen inside the sensor. There is the possibility of using the method in industrial installations by using hydrogen for cooling electric current generators

    Cost modelling for cloud computing utilisation in long term digital preservation

    Get PDF
    The rapid increase in volume of digital information can cause concern among organisations regarding manageability, costs and security of their information in the long-term. As cloud computing technology is often used for digital preservation purposes and is still evolving, there is difficulty in determining its long-term costs. This paper presents the development of a generic cost model for public and private clouds utilisation in long term digital preservation (LTDP), considering the impact of uncertainties and obsolescence issues. The cost model consists of rules and assumptions and was built using a combination of activity based and parametric cost estimation techniques. After generation of cost breakdown structures for both clouds, uncertainties and obsolescence were categorised. To quantify impacts of uncertainties on cost, three-point estimate technique was employed and Monte Carlo simulation was applied to generate the probability distribution on each cost driver. A decision support cost estimation tool with dashboard representation of results was developed

    Synthesis and characterization of modified silica gel as an intermediate in the generation of gaseous standard mixtures

    Get PDF
    A possibility of extending analytical applications of chemically modified silica gels is described. This involves their utilization for the generation of gaseous standard mixtures consisting of methyl chloride as the analyte and nitrogen as a carrier gas to be used for the calibration of the GC-FID system. N-methylmorpholine was chemically bonded to the propylsilylated surface of silica gel forming chloride of an appropriate immobilized compound which, under certain conditions, undergoes thermal decomposition yielding a single, volatile component (methyl chloride). Such a method of generating specific amounts of a standard substance can be used both for a single point calibration and for checking the accuracy of an analytical instrument in a relatively wide measurement range. It was found that 3.40±0.081 mg of methyl chloride can be generated per 1 g of the modified gel

    Comparison of PCBs and PAHs levels in European coastal waters using mussels from the <i>Mytilus edulis</i> complex as biomonitors

    Get PDF
    Mussels from the Mytilus edulis complex were used as biomonitors for two groups of organic pollutants: polychlorinated biphenyls (PCBs, congeners: 28, 52, 101, 118, 138, 153 and 180) and polycyclic aromatic hydrocarbons (PAHs, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene) at 17 sampling sites to assess their relative bioavailabilities in coastal waters around Europe. Because of the temporal differences in PCBs and PAHs concentrations, data were adjusted using Seasonal Variation Coefficients (SVC) before making large-scale spatial comparisons. The highest concentrations of PCBs were found near estuaries of large rivers flowing through urban areas and industrial regions. Elevated bioavailabilities of PAHs occurred in the vicinity of large harbors, urban areas, and regions affected by petroleum pollution as well as in some remote locations, which indicated long-range atmospheric deposition

    Colorimetric Solid-Phase Extraction Method for Cu(II) Ion Determination Using 2-Hydroxybenzaldehyde Benzoylhydrazone as Sensing Reagent

    Get PDF
    A new sensor based on the use of 2-hydroxybenzaldehyde benzoylhydrazone as a colorimetric reagent immobilized onto styrenedivinylbenzene disks has been carried out for the determination of Cu(II) ions within several minutes. The sensor is designed on a rapid and easy two-step procedure: (1) the extraction of Cu(II) ions onto a disk loaded with the copper-selective colorimetric reagent and (2) the determination of the complexed analyte directly on the surface of the disk using diffuse reflectance measurements at 400 nm. The color of the disk changed from white to green in the presence of Cu(II) ions. The work herein details the optimization of the sensing system employing a fractional factorial design 33-1 considering three variables (pH, immobilization time, and amount of ligand immobilized onto the disk). The Pareto chart and response surfaces in a spherical domain indicated that the optimum conditions for the sensing of copper ions were pH ¼ 7, with a ligand immobilization time of 10 min and 6.25 mg of reagent loaded onto the disk. Under the optimum conditions, the analytical parameters of the proposed method were determined. The calibration graph was linear over the range of 0 to 2.5 mg L 1 of Cu(II) with a detection limit of 0.21 mg L 1. The relative standard deviation for six measurements of 1 mg L 1 of Cu(II) was found to be 4.87%. The interference from inorganic salts and other metals was found not to be of major concern when monitoring copper ions in water samples. The simplicity and rapidity of this technique make it convenient and amenable for on-site and routine analysis

    In vitro studies on the relationship between the antioxidant activities of some berry extracts and their binding properties to serum albumin

    Get PDF
    The aim of this study was to investigate the possibility to use the bioactive components from cape gooseberry (Physalis peruviana), blueberry (Vaccinium corymbosum), and cranberry (Vaccinium macrocarpon) extracts as a novel source against oxidation in food supplementation. The quantitative analysis of bioactive compounds (polyphenols, flavonoids, flavanols, carotenoids, and chlorophyll) was based on radical scavenging spectrophometric assays and mass spectrometry. The total phenolic content was the highest (P < 0.05) in water extract of blueberries (46.6 ± 4.2 mg GAE/g DW). The highest antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and Cupric reducing antioxidant capacity were in water extracts of blueberries, showing 108.1 ± 7.2 and 131.1 ± 9.6 μMTE/g DW with correlation coefficients of 0.9918 and 0.9925, and by β-carotene linoleate assay at 80.1 ± 6.6 % with correlation coefficient of 0.9909, respectively. The water extracts of berries exhibited high binding properties with human serum albumin in comparison with quercetin. In conclusion, the bioactive compounds from a relatively new source of gooseberries in comparison with blueberries and cranberries have the potential as food supplementation for human health. The antioxidant and binding activities of berries depend on their bioactive compounds

    Rapid Detection of Polychlorinated Biphenyls at Trace Levels in Real Environmental Samples by Surface-Enhanced Raman Scattering

    Get PDF
    Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs) in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10−6 mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls

    Characterization of metabolites in different kiwifruit varieties by NMR and fluorescence spectroscopy

    Get PDF
    It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of 1H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry
    corecore