132 research outputs found

    Reduced leakage current in Josephson tunnel junctions with codeposited barriers

    Full text link
    Josephson junctions were fabricated using two different methods of barrier formation. The trilayers employed were Nb/Al-AlOx/Nb on sapphire, where the first two layers were epitaxial. The oxide barrier was formed either by exposing the Al surface to O2 or by codepositing Al in an O2 background. The codeposition process yielded junctions that showed the theoretically predicted subgap current and no measurable shunt conductance. In contrast, devices with barriers formed by thermal oxidation showed a small shunt conductance in addition to the predicted subgap current.Comment: 3 pages, 4 figure

    Investigating ceiling effects in longitudinal data analysis

    Get PDF
    Score limitation at the top of a scale is commonly termed "ceiling effect." Ceiling effects can lead to serious artifactual parameter estimates in most data analysis. This study examines the consequences of ceiling effects in longitudinal data analysis and investigates several methods of dealing with ceiling effects through Monte Carlo simulations and empirical data analyses. Data were simulated based on a latent growth curve model with T D 5 occasions. The proportion of the ceiling data [10%-40%] was manipulated by using different thresholds, and estimated parameters were examined for R D 500 replications. The results showed that ceiling effects led to incorrect model selection and biased parameter estimation (shape of the curve and magnitude of the changes) when regular growth curve models were applied. The Tobit growth curve model, instead, performed very well in dealing with ceiling effects in longitudinal data analysis. The Tobit growth curve model was then applied in an empirical cognitive aging study and the results were discussed

    Wafer-scale Epitaxial Graphene Growth on the Si-face of Hexagonal SiC (0001) for High Frequency Transistors

    Full text link
    Up to two layers of epitaxial graphene have been grown on the Si-face of two-inch SiC wafers exhibiting room-temperature Hall mobilities up to 1800 cm^2/Vs, measured from ungated, large, 160 micron x 200 micron Hall bars, and up to 4000 cm^2/Vs, from top-gated, small, 1 micron x 1.5 micron Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annealing step in Argon for epitaxial graphene formation. The structure and morphology of this graphene has been characterized using AFM, HRTEM, and Raman spectroscopy. Furthermore, top-gated radio frequency field effect transistors (RF-FETs) with a peak cutoff frequency fT of 100 GHz for a gate length of 240 nm were fabricated using epitaxial graphene grown on the Si face of SiC that exhibited Hall mobilities up to 1450 cm^2/Vs from ungated Hall bars and 1575 cm^2/Vs from top-gated ones. This is by far the highest cut-off frequency measured from any kind of graphene.Comment: 30 pages (double line spacing). Submitte

    International comparison of cosmetic outcomes of breast conserving surgery and radiation therapy for women with ductal carcinoma in situ of the breast

    Get PDF
    Purpose: To assess the cosmetic impact of breast conserving surgery (BCS), whole breast irradiation (WBI) fractionation and tumour bed boost (TBB) use in a phase III trial for women with ductal carcinoma in situ (DCIS) of the breast. Materials and methods: Baseline and 3-year cosmesis were assessed using the European Organization for Research and Treatment of Cancer (EORTC) Cosmetic Rating System and digital images in a randomised trial of non-low risk DCIS treated with postoperative WBI +/- TBB. Baseline cosmesis was assessed for four geographic clusters of treating centres. Cosmetic failure was a global score of fair or poor. Cosmetic deterioration was a score change from excellent or good at baseline to fair or poor at three years. Odds ratios for cosmetic deterioration by WBI dose-fractionation and TBB use were calculated for both scoring systems. Results: 1608 women were enrolled from 11 countries between 2007 and 2014. 85-90% had excellent or good baseline cosmesis independent of geography or assessment method. TBB (16 Gy in 8 fractions) was associated with a >2-fold risk of cosmetic deterioration (p

    The effect of lengthening contractions on neuromuscular junction structure in adult and old mice

    Get PDF
    Skeletal muscles of old mice demonstrate a profound inability to regenerate fully following damage. Such a failure could be catastrophic to older individuals where muscle loss is already evident. Degeneration and regeneration of muscle fibres following contraction-induced injury in adult and old mice are well characterised, but little is known about the accompanying changes in motor neurons and neuromuscular junctions (NMJs) following this form of injury although defective re-innervation of muscle following contraction-induced damage has been proposed to play a role in sarcopenia. This study visualised and quantified structural changes to motor neurons and NMJs in Extensor digitorum longus (EDL) muscles of adult and old Thy1-YFP transgenic mice during regeneration following contraction-induced muscle damage. Data demonstrated that the damaging contraction protocol resulted in substantial initial disruption to NMJs in muscles of adult mice, which was reversed entirely within 28 days following damage. In contrast, in quiescent muscles of old mice, ∼15 % of muscle fibres were denervated and ∼80 % of NMJs showed disruption. This proportion of denervated and partially denervated fibres remained unchanged following recovery from contraction-induced damage in muscles of old mice although ∼25 % of muscle fibres were completely lost by 28 days post-contractions. Thus, in old mice, the failure to restore full muscle force generation that occurs following damage does not appear to be due to any further deficit in the percentage of disrupted NMJs, but appears to be due, at least in part, to the complete loss of muscle fibres following damag

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Natriuretic peptide activation of extracellular regulated kinase 1/2 (ERK1/2) pathway by particulate guanylyl cyclases in GH3 somatolactotropes.

    Get PDF
    The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues

    Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle

    Get PDF
    Age-related skeletal muscle dysfunction is the underlying cause of morbidity that affects up to half the population aged 80 and over. Considerable evidence indicates that oxidative damage and mitochondrial dysfunction contribute to the sarcopenic phenotype that occurs with aging. To examine this, we administered the mitochondria-targeted antioxidant mitoquinone mesylate {[10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenylphosphonium; 100 μM} to wild-type C57BL/6 mice for 15 wk (from 24 to 28 mo of age) and investigated the effects on age-related loss of muscle mass and function, changes in redox homeostasis, and mitochondrial organelle integrity and function. We found that mitoquinone mesylate treatment failed to prevent age-dependent loss of skeletal muscle mass associated with myofiber atrophy or alter a variety of in situ and ex vivo muscle function analyses, including maximum isometric tetanic force, decline in force after a tetanic fatiguing protocol, and single-fiber-specific force. We also found evidence that long-term mitoquinone mesylate administration did not reduce mitochondrial reactive oxygen species or induce significant changes in muscle redox homeostasis, as assessed by changes in 4-hydroxynonenal protein adducts, protein carbonyl content, protein nitration, and DNA damage determined by the content of 8-hydroxydeoxyguanosine. Mitochondrial membrane potential, abundance, and respiration assessed in permeabilized myofibers were not significantly altered in response to mitoquinone mesylate treatment. Collectively, these findings demonstrate that long-term mitochondria-targeted mitoquinone mesylate administration failed to attenuate age-related oxidative damage in skeletal muscle of old mice or provide any protective effect in the context of muscle agin

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore