6 research outputs found

    Development of an efficient glucosinolate extraction method

    Get PDF
    Background: Glucosinolates, anionic sulfur rich secondary metabolites, have been extensively studied because of their occurrence in the agriculturally important brassicaceae and their impact on human and animal health. There is also increasing interest in the biofumigant properties of toxic glucosinolate hydrolysis products as a method to control agricultural pests. Evaluating biofumigation potential requires rapid and accurate quantification of glucosinolates, but current commonly used methods of extraction prior to analysis involve a number of time consuming and hazardous steps; this study aimed to develop an improved method for glucosinolate extraction. Results: Three methods previously used to extract glucosinolates from brassicaceae tissues, namely extraction in cold methanol, extraction in boiling methanol, and extraction in boiling water were compared across tissue type (root, stem leaf ) and four brassicaceae species (B. juncea, S. alba, R. sativus, and E. sativa). Cold methanol extraction was shown to perform as well or better than all other tested methods for extraction of glucosinolates with the exception of glucoraphasatin in R. sativus shoots. It was also demonstrated that lyophilisation methods, routinely used during extraction to allow tissue disruption, can reduce final glucosinolate concentrations and that extracting from frozen wet tissue samples in cold 80% methanol is more effective. Conclusions: We present a simplified method for extracting glucosinolates from plant tissues which does not require the use of a freeze drier or boiling methanol, and is therefore less hazardous, and more time and cost effective. The presented method has been shown to have comparable or improved glucosinolate extraction efficiency relative to the commonly used ISO method for major glucosinolates in the Brassicaceae species studied: sinigrin and gluconasturtiin in B. juncea; sinalbin, glucotropaeolin, and gluconasturtiin in S. alba; glucoraphenin and glucoraphasatin in R. sativus; and glucosatavin, glucoerucin and glucoraphanin in E. sativa

    Increasing water-use efficiency directly through genetic manipulation of stomatal density

    Get PDF
    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max)) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2) atmospheres

    Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake

    Get PDF
    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 (15N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful

    Potential isothiocyanate release remains constant across biofumigant seeding rates

    Get PDF
    Biofumigation is an integrated pest management method involving the mulching of a glucosinolate containing cover crop into a field in order to generate toxic isothiocyanates, effective soil borne pest control compounds. Variation in biofumigation efficacy demonstrates a need to better understand the factors affecting pest control outcomes and develop best practice for biofumigant choice, growth conditions and mulching methods which allow the greatest potential isothiocyanate release. We measured the glucosinolate concentration of 6 different commercial varieties of three different biofumigant plant species: Brassica juncea (ISCI99, Vitasso, Scala) Raphanus sativus (Diablo, Bento) and Sinapis alba (Ida Gold). Plants were grown at a range of commercially appropriate seeding rates and sampled at three growth stages (early development, mature, and 50% flowering). Within biofumigant species, highest ITC release potential was achieved with B. juncea cv. ISCI99 and R. sativus cv. Bento. Highest ITC release potential occurred at 50% flowering growth stage across species. Seeding rate had minor impact on ITC release potential from R. sativus but had no significant effect on the ITC release potential of B. juncea or S. alba cultivars

    Manipulating stomatal density affects plant growth, yield and drought tolerance

    No full text
    Photosynthesis in leaves is dependent on CO2 reaching mesophyll cells which contain the bulk of chlorophyll, yet most of the leaf is enveloped by a waxy cuticle which is almost impermeable to CO2 and water. Gas exchange is enabled through pores on the leaf epidermis called stomata which are each formed by two specialised guard cells morphologically distinct from general epidermal cells and able to react to their environment by increasing or decreasing cell turgor. This enables the stomatal pores to open or close depending on the plant’s need to acquire CO2 or conserve water, allowing much needed flexibility in plant water relations. The experiments detailed in this thesis have the broad aim of determining correlations between altered stomatal density, stomatal size, leaf gas exchange, drought tolerance, and plant water use efficiency. Most experiments have been carried out on a set of Arabidopsis mutants with altered expression of Epidermal Patterning Factors (EPFs), a peptide family which is involved in the development of stomatal patterning and density on the leaf. Chapter 3 addresses the question of how altering the EPF family of peptides affects leaf morphology and more specifically whether stomatal densities correlate with stomatal size in Arabidopsis plants with altered EPF expression patterns. Chapter 4 examines the leaf gas exchange properties of Arabidopsis and questions whether or not altering stomatal density impacts leaf water use efficiency and photosynthesis. Finally, experiments in chapter 5 highlight how combined changes to leaf morphology and gas exchange due to altered EPF expression impact drought tolerance, seed yield and rosette morphology. Although most of this work was carried out on Arabidopsis plants, stomatal densities and water use efficiencies were also examined in a set of Barley cultivars to determine whether similar trends could be observed in a directly agriculturally useful plant. Results of these experiments and suggested directions to pursue this work in barley are summarised in chapter 6
    corecore