266 research outputs found

    Long-term monitoring reveals forest tree community change driven by atmospheric sulphate pollution and contemporary climate change

    Get PDF
    Diversity and Distributions published by John Wiley & Sons Ltd Aim: Montane environments are sentinels of global change, providing unique opportunities to assess impacts on species diversity. Multiple anthropogenic stressors such as climate change and atmospheric pollution may act concurrently or synergistically in restructuring communities. Thus, a major challenge for conservation is untangling the relative importance of different stressors. Here, we combine long-term monitoring with multivariate community modelling to estimate the anthropogenic drivers shaping forest tree diversity along an elevational gradient. Location: Camels Hump Mountain, Vermont, USA. Methods: We used Generalized Dissimilarity Modelling (GDM) to model spatial and temporal turnover in beta diversity along an elevational gradient over a 50-year period and tested for spatiotemporal shifts in density and elevational distribution of individual species. GDMs were used to predict community turnover as nonlinear functions of changes in elevation, climate and atmospheric pollution. Results: We observed significant shifts in elevational range and density of individual species, which contributed to an overall reduction in the elevational gradient in beta diversity through time. GDMs showed the combined effects of sulphate deposition and temperature as drivers of this temporal reduction in beta diversity. Spatiotemporal changes differed among species, with shifts observed both up- and downslope. For example, in a reversal of a previous upslope range contraction, red spruce (Picea rubens Sarg.) increased in density and shifted downslope since the 1990s, occupying warmer, drier climates. Main conclusion: Our results demonstrate that global change is impacting the stratification of forest tree diversity along elevational gradients, but the responses of individual species are complex and variable in direction. We suggest abiotic drivers may directly impact individual species while also indirectly altering species interactions along elevational gradients. Our approach modelling the drivers of compositional turnover quantifies the rate and amount of change in beta diversity along environmental gradients and serves as a powerful complement to studying species-specific responses

    Perceptions of U.S. and Canadian maple syrup producers toward climate change, its impacts, and potential adaptation measures

    Get PDF
    The production of maple syrup is an important cultural and economic activity directly related to the climate of northeastern North America. As a result, there are signs that climate change could have negative impacts on maple syrup production in the next decades, particularly for regions located at the southern margins of the sugar maple (Acer saccharum Marsh.) range. The purpose of this survey study is to present the beliefs and opinions of maple syrup producers of Canada (N = 241) and the U.S. (N = 113) on climate change in general, its impacts on sugar maple health and maple syrup production, and potential adaptation measures. Using conditional inference classification trees, we examined how the socio-economic profile of respondents and the geographic location and size of respondents’ sugar bushes shaped the responses of survey participants. While a majority (75%) of respondents are confident that the average temperature on Earth is increasing, less than half (46%) believe that climate change will have negative impacts on maple syrup yield in the next 30 years. Political view was a significant predictor of these results, with respondents at the right right and center-right of the political spectrum being less likely to believe in climate change and less likely to anticipate negative effects of climate change on maple syrup production. In addition, 77% of the participants indicated an interest in adopting adaptation strategies if those could increase maple syrup production. This interest was greater for respondents using vacuum tubing for sap collection than other collection methods. However, for many respondents (particularly in Canada), lack of information was identified as a constraint limiting adaptation to climate change.SL and AP were partly funded by the CICan Career-Launcher Internship program. AA was supported by Spanish Government through the Juan de la Cierva fellowship program (IJCI- 2016-30049)

    Cross-over study of novice intubators performing endotracheal intubation in an upright versus supine position

    Get PDF
    There are a number of potential physical advantages to performing orotracheal intubation in an upright position. The objective of this study was to measure the success of intubation of a simulated patient in an upright versus supine position by novice intubators after brief training. This was a cross-over design study in which learners (medical students, physician assistant students, and paramedic students) intubated mannequins in both a supine (head of the bed at 0°) and upright (head of bed elevated at 45°) position. The primary outcome of interest was successful intubation of the trachea. Secondary outcomes included log time to intubation, Cormack–Lehane view obtained, Percent of Glottic Opening score, provider assessment of difficulty, and overall provider satisfaction with the position. There were a total of 126 participants: 34 medical students, 84 physician assistant students, and 8 paramedic students. Successful tracheal intubation was achieved in 114 supine attempts (90.5 %) and 123 upright attempts (97.6 %; P = 0.283). Upright positioning was associated with significantly faster log time to intubation, higher likelihood of achieving Grade I Cormack–Lehane view, higher Percent of Glottic Opening score, lower perceived difficulty, and higher provider satisfaction. A subset of 74 participants had no previous intubation training or experience. For these providers, there was a non-significant trend toward improved intubation success with upright positioning vs supine positioning (98.6 % vs. 87.8 %, P = 0.283). For all secondary outcomes in this group, upright positioning significantly outperformed supine positioning

    Feasibility of upright patient positioning and intubation success rates at two academic emergency departments

    Get PDF
    Objectives Endotracheal intubation is most commonly taught and performed in the supine position. Recent literature suggests that elevating the patient's head to a more upright position may decrease peri-intubation complications. However, there is little data on the feasibility of upright intubation in the emergency department. The goal of this study was to measure the success rate of emergency medicine residents performing intubation in supine and non-supine, including upright positions. Methods This was a prospective observational study. Residents performing intubation recorded the angle of the head of the bed. The number of attempts required for successful intubation was recorded by faculty and espiratory therapists. The primary outcome of first past success was calculated with respect to three groups: 0–10° (supine), 11–44° (inclined), and ≥ 45° (upright); first past success was also analyzed in 5 degree angle increments. Results A total of 231 intubations performed by 58 residents were analyzed. First pass success was 65.8% for the supine group, 77.9% for the inclined group, and 85.6% for the upright group (p = 0.024). For every 5 degree increase in angle, there was increased likelihood of first pass success (AOR = 1.11; 95% CI = 1.01–1.22, p = 0.043). Conclusions In our study emergency medicine residents had a high rate of success intubating in the upright position. While this does not demonstrate causation, it correlates with recent literature challenging the traditional supine approach to intubation and indicates that further investigation into optimal positioning during emergency department intubations is warranted

    A simple method for directional transcriptome sequencing using Illumina technology.

    Get PDF
    High-throughput sequencing of cDNA has been used to study eukaryotic transcription on a genome-wide scale to single base pair resolution. In order to compensate for the high ribonuclease activity in bacterial cells, we have devised an equivalent technique optimized for studying complete prokaryotic transcriptomes that minimizes the manipulation of the RNA sample. This new approach uses Illumina technology to sequence single-stranded (ss) cDNA, generating information on both the direction and level of transcription throughout the genome. The protocol, and associated data analysis programs, are freely available from http://www.sanger.ac.uk/Projects/Pathogens/Transcriptome/. We have successfully applied this method to the bacterial pathogens Salmonella bongori and Streptococcus pneumoniae and the yeast Schizosaccharomyces pombe. This method enables experimental validation of genetic features predicted in silico and allows the easy identification of novel transcripts throughout the genome. We also show that there is a high correlation between the level of gene expression calculated from ss-cDNA and double-stranded-cDNA sequencing, indicting that ss-cDNA sequencing is both robust and appropriate for use in quantitative studies of transcription. Hence, this simple method should prove a useful tool in aiding genome annotation and gene expression studies in both prokaryotes and eukaryotes

    RAGE contributes to allergen driven severe neutrophilic airway inflammation via NLRP3 inflammasome activation in mice

    Get PDF
    BackgroundAsthma is a major public healthcare burden, affecting over 300 million people worldwide. While there has been great progress in the treatment of asthma, subsets of patients who present with airway neutrophilia, often have more severe disease, and tend to be resistant to conventional corticosteroid treatments. The receptor for advanced glycation endproducts (RAGE) plays a central role in the pathogenesis of eosinophilic asthma, however, it’s role in neutrophilic asthma remains largely uninvestigated.MethodsA mouse model of severe steroid resistant neutrophilic airway disease (SSRNAD) using the common fungal allergen Alternaria alternata (AA) was employed to evaluate the effects of genetic ablation of RAGE and pharmacological inhibition of the NLRP3 inflammasome on neutrophilic airway inflammation.ResultsAA exposure induced robust neutrophil-dominant airway inflammation and increased BALF levels of Th1/Th17 cytokines in wild-type mice, which was significantly reduced in RAGE-/- mice. Serum levels of IgE and IgG1 were increased similarly in both wild-type and RAGE-/- mice. Pharmacological inhibition of NLRP3 blocked the effects of AA exposure and NLRP3 inflammasome activation was RAGE-dependent. Neutrophil extracellular traps were elevated in the BALF of wild-type but not RAGE-/- mice and an atypical population of SiglecF+ neutrophils were identified in the BALF. Lastly, time-course studies found that RAGE expression promoted sustained neutrophil accumulation in the BALF of mice in response to AA

    Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia.

    Get PDF
    BACKGROUND: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare. OBJECTIVES: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP. METHODS: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >10(4) colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination. RESULTS: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%). CONCLUSIONS: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship

    Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2) : a randomised controlled trial and process evaluation

    Get PDF
    Background Ventilator-associated pneumonia is the most common intensive care unit (ICU)-acquired infection, yet accurate diagnosis remains difficult, leading to overuse of antibiotics. Low concentrations of IL-1β and IL-8 in bronchoalveolar lavage fluid have been validated as effective markers for exclusion of ventilator-associated pneumonia. The VAPrapid2 trial aimed to determine whether measurement of bronchoalveolar lavage fluid IL-1β and IL-8 could effectively and safely improve antibiotic stewardship in patients with clinically suspected ventilator-associated pneumonia. Methods VAPrapid2 was a multicentre, randomised controlled trial in patients admitted to 24 ICUs from 17 National Health Service hospital trusts across England, Scotland, and Northern Ireland. Patients were screened for eligibility and included if they were 18 years or older, intubated and mechanically ventilated for at least 48 h, and had suspected ventilator-associated pneumonia. Patients were randomly assigned (1:1) to biomarker-guided recommendation on antibiotics (intervention group) or routine use of antibiotics (control group) using a web-based randomisation service hosted by Newcastle Clinical Trials Unit. Patients were randomised using randomly permuted blocks of size four and six and stratified by site, with allocation concealment. Clinicians were masked to patient assignment for an initial period until biomarker results were reported. Bronchoalveolar lavage was done in all patients, with concentrations of IL-1β and IL-8 rapidly determined in bronchoalveolar lavage fluid from patients randomised to the biomarker-based antibiotic recommendation group. If concentrations were below a previously validated cutoff, clinicians were advised that ventilator-associated pneumonia was unlikely and to consider discontinuing antibiotics. Patients in the routine use of antibiotics group received antibiotics according to usual practice at sites. Microbiology was done on bronchoalveolar lavage fluid from all patients and ventilator-associated pneumonia was confirmed by at least 104 colony forming units per mL of bronchoalveolar lavage fluid. The primary outcome was the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage. Data were analysed on an intention-to-treat basis, with an additional per-protocol analysis that excluded patients randomly assigned to the intervention group who defaulted to routine use of antibiotics because of failure to return an adequate biomarker result. An embedded process evaluation assessed factors influencing trial adoption, recruitment, and decision making. This study is registered with ISRCTN, ISRCTN65937227, and ClinicalTrials.gov, NCT01972425. Findings Between Nov 6, 2013, and Sept 13, 2016, 360 patients were screened for inclusion in the study. 146 patients were ineligible, leaving 214 who were recruited to the study. Four patients were excluded before randomisation, meaning that 210 patients were randomly assigned to biomarker-guided recommendation on antibiotics (n=104) or routine use of antibiotics (n=106). One patient in the biomarker-guided recommendation group was withdrawn by the clinical team before bronchoscopy and so was excluded from the intention-to-treat analysis. We found no significant difference in the primary outcome of the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage in the intention-to-treat analysis (p=0·58). Bronchoalveolar lavage was associated with a small and transient increase in oxygen requirements. Established prescribing practices, reluctance for bronchoalveolar lavage, and dependence on a chain of trial-related procedures emerged as factors that impaired trial processes

    Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster

    Get PDF
    Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating.In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the known SUMO consensus motif, while TFs predicted to have only one role lack this motif.We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a promising area for further research and might be another step towards uncovering the biological mechanisms underlying transcriptional regulation

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore