117 research outputs found

    Among-site variability in the stochastic dynamics of East African coral reefs

    Get PDF
    Coral reefs are dynamic systems whose composition is highly influenced by unpredictable biotic and abiotic factors. Understanding the spatial scale at which long-term predictions of reef composition can be made will be crucial for guiding conservation efforts. Using a 22-year time series of benthic composition data from 20 reefs on the Kenyan and Tanzanian coast, we studied the long-term behaviour of Bayesian vector autoregressive state-space models for reef dynamics, incorporating among-site variability. We estimate that if there were no among-site variability, the total long-term variability would be approximately one third of its current value. Thus among-site variability contributes more to long-term variability in reef composition than does temporal variability. Individual sites are more predictable than previously thought, and predictions based on current snapshots are informative about long-term properties. Our approach allowed us to identify a subset of possible climate refugia sites with high conservation value, where the long-term probability of coral cover <= 0.1 was very low. Analytical results show that this probability is most strongly influenced by among-site variability and by interactions among benthic components within sites. These findings suggest that conservation initiatives might be successful at the site scale as well as the regional scale.Comment: 97 pages, 49 figure

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    Wicked social–ecological problems forcing unprecedented change on the latitudinal margins of coral reefs: the case of southwest Madagascar

    Get PDF
    High-latitude coral reefs may be a refuge and area of reef expansion under climate change. As these locations are expected to become dryer and as livestock and agricultural yields decline, coastal populations may become increasingly dependent on marine resources. To evaluate this social–ecological conundrum, we examined the Grand RĂ©cif of Toliara (GRT), southwest Madagascar, which was intensively studied in the 1960s and has been highly degraded since the 1980s. We analyzed the social and ecological published and unpublished literature on this region and provide new data to assess the magnitude of the changes and evaluate the causes of reef degradation. Top-down controls were identified as the major drivers: human population growth and migrations, overfishing, and climate change, specifically decreased rainfall and rising temperature. Water quality has not changed since originally studied, and bottom-up control was ruled out. The identified network of social–ecological processes acting at different scales implies that decision makers will face complex problems that are linked to broader social, economic, and policy issues. This characterizes wicked problems, which are often dealt with by partial solutions that are exploratory and include inputs from various stakeholders along with information sharing, knowledge synthesis, and trust building. A hybrid approach based on classical fishery management options and preferences, along with monitoring, feedback and forums for searching solutions, could move the process of adaptation forward once an adaptive and appropriately scaled governance system is functioning. This approach has broad implications for resources management given the emerging climate change and multiple social and environmental stresses

    Social-ecological alignment and ecological conditions in coral reefs

    Get PDF
    Complex social-ecological interactions underpin many environmental problems. To help capture this complexity, we advance an interdisciplinary network modeling framework to identify important relationships between people and nature that can influence environmental conditions. Drawing on comprehensive social and ecological data from five coral reef fishing communities in Kenya; including interviews with 648 fishers, underwater visual census data of reef ecosystem condition, and time-series landings data; we show that positive ecological conditions are associated with ‘social-ecological network closure’ – i.e., fully linked and thus closed network structures between social actors and ecological resources. Our results suggest that when fishers facing common dilemmas form cooperative communication ties with direct resource competitors, they may achieve positive gains in reef fish biomass and functional richness. Our work provides key empirical insight to a growing body of research on social-ecological alignment, and helps to advance an integrative framework that can be applied empirically in different social-ecological contexts

    Human disruption of coral reef trophic structure

    Get PDF
    The distribution of biomass among trophic levels provides a theoretical basis for understanding energy flow and the hierarchical structure of animal communities. In the absence of energy subsidies [1], bottom-heavy trophic pyramids are expected to predominate, based on energy transfer efficiency [2] and empirical evidence from multiple ecosystems [3]. However, the predicted pyramid of biomass distribution among trophic levels may be disrupted through trophic replacement by alternative organisms in the ecosystem, trophic cascades, and humans preferentially impacting specific trophic levels [4, 5 and 6]. Using empirical data spanning >250 coral reefs, we show how trophic pyramid shape varies given human-mediated gradients along two orders of magnitude in reef fish biomass. Mean trophic level of the assemblage increased modestly with decreasing biomass, contrary to predictions of fishing down the food web [7]. The mean trophic level pattern is explained by trophic replacement of herbivorous fish by sea urchins at low biomass and the accumulation of slow-growing, large-bodied, herbivorous fish at high biomass. Further, at high biomass, particularly where fishers are not selectively removing higher trophic level individuals, a concave trophic distribution emerges. The concave trophic distribution implies a more direct link between lower and upper trophic levels, which may confer greater energy efficiency. This trophic distribution emerges when community biomass exceeds ∌650 kg/ha, suggesting that fisheries for upper trophic level species will only be supported under lightly fished scenarios

    Diversification of refugia types needed to secure the future of coral reefs subject to climate change

    Get PDF
    Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate

    Research Priorities for Achieving Healthy Marine Ecosystems and Human Communities in a Changing Climate

    Get PDF
    ABSTRACT: The health of coastal human communities and marine ecosystems are at risk from a host of anthropogenic stressors, in particular, climate change. Because ecological health and human well-being are inextricably connected, effective and positive responses to current risks require multidisciplinary solutions. Yet, the complexity of coupled social-ecological systems has left many potential solutions unidentified or insufficiently explored. The urgent need to achieve positive social and ecological outcomes across local and global scales necessitates rapid and targeted multidisciplinary research to identify solutions that have the greatest chance of promoting benefits for both people and nature. To address these challenges, we conducted a forecasting exercise with a diverse, multidisciplinary team to identify priority research questions needed to promote sustainable and just marine social-ecological systems now and into the future, within the context of climate change and population growth. In contrast to the traditional reactive cycle of science and management, we aimed to generate questions that focus on what we need to know, before we need to know it. Participants were presented with the question, "If we were managing oceans in 2050 and looking back, what research, primary or synthetic, would wish we had invested in today?" We first identified major social and ecological events over the past 60 years that shaped current human relationships with coasts and oceans. We then used a modified Delphi approach to identify nine priority research areas and 46 questions focused on increasing sustainability and well-being in marine social-ecological systems. The research areas we identified include relationships between ecological and human health, access to resources, equity, governance, economics, resilience, and technology. Most questions require increased collaboration across traditionally distinct disciplines and sectors for successful study and implementation. By identifying these questions, we hope to facilitate the discourse, research, and policies needed to rapidly promote healthy marine ecosystems and the human communities that depend upon them

    Attributes of climate resilience in fisheries: from theory to practice

    Get PDF
    In a changing climate, there is an imperative to build coupled social-ecological systems—including fisheries—that can withstand or adapt to climate stressors. Although resilience theory identifies system attributes that supposedly confer resilience, these attributes have rarely been clearly defined, mechanistically explained, nor tested and applied to inform fisheries governance. Here, we develop and apply a comprehensive resilience framework to examine fishery systems across (a) ecological, (b) socio-economic and (c) governance dimensions using five resilience domains: assets, flexibility, organization, learning and agency. We distil and define 38 attributes that confer climate resilience from a coupled literature- and expert-driven approach, describe how they apply to fisheries and provide illustrative examples of resilience attributes in action. Our synthesis highlights that the directionality and mechanism of these attributes depend on the specific context, capacities, and scale of the focal fishery system and associated stressors, and we find evidence of interdependencies among attributes. Overall, however, we find few studies that test resilience attributes in fisheries across all parts of the system, with most examples focussing on the ecological dimension. As such, meaningful quantification of the attributes’ contributions to resilience remains a challenge. Our synthesis and holistic framework represent a starting point for critical application of resilience concepts to fisheries social-ecological systems

    Effective fisheries management instrumental in improving fish stock status

    Get PDF
    Marine fish stocks are an important part of the world food system and are particularly important for many of the poorest people of the world. Most existing analyses suggest overfishing is increasing, and there is widespread concern that fish stocks are decreasing throughout most of the world. We assembled trends in abundance and harvest rate of stocks that are scientifically assessed, constituting half of the reported globalmarine fish catch. For these stocks, on average, abundance is increasing and is at proposed target levels. Compared with regions that are intensively managed, regions with less-developed fisheries management have, on average, 3-fold greater harvest rates and half the abundance as assessed stocks. Available evidence suggests that the regions without assessments of abundance have little fisheries management, and stocks are in poor shape. Increased application of area-appropriate fisheries science recommendations and management tools are still needed for sustaining fisheries in places where they are lacking.Fil: Hilborn, Ray. University of Washington; Estados UnidosFil: Amoroso, Ricardo Oscar. University of Washington; Estados UnidosFil: Anderson, Christopher M.. University of Washington; Estados UnidosFil: Baum, Julia K.. University of Victoria; CanadĂĄFil: Branch, Trevor A.. University of Washington; Estados UnidosFil: Costello, Christopher. University of California at Santa Barbara; Estados UnidosFil: de Moor, Carryn L.. University of Cape Town; SudĂĄfricaFil: Faraj, Abdelmalek. Einstitut National de Recherche Halieutique; MarruecosFil: Hively, Daniel. University of Washington; Estados UnidosFil: Jensen, Olaf P.. Rutgers University; Estados UnidosFil: Kurota, Hiroyuki. Japan Fisheries Research and Education Agency; JapĂłnFil: Little, L. Richard. Csiro Oceans and Atmosphere; AustraliaFil: Mace, Pamela. Ministry for Primary Industries; Nueva ZelandaFil: McClanahan, Tim. Wildlife Conservation Society; Estados UnidosFil: Melnychuk, Michael C.. University of Washington; Estados UnidosFil: Minto, CĂłilĂ­n. Galway-Mayo Institute of Technology; IrlandaFil: Osio, Giacomo Chato. Joint Research Centre (JRC); Italia. DG Maritime Affairs and Fisheries, European Commission; BĂ©lgicaFil: Pons, Maite. University of Washington; Estados UnidosFil: Parma, Ana MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Segurado, Susana. Sustainable Fisheries Partnership; Estados UnidosFil: Szuwalski, Cody S.. University of California at Santa Barbara; Estados UnidosFil: Wilson, Jono R.. University of California at Santa Barbara; Estados Unidos. The Nature Conservancy; Estados UnidosFil: Ye, Yimin. Food and Agriculture Organization of the United Nations; Itali

    Managing Coral Reef Fish Community Biomass is a Priority for Biodiversity Conservation in Madagascar

    No full text
    Elucidating factors that influence natural resources and diversity can assist managing species and their ecological functions. Key management options include protecting unique locations or implementing restrictions that more broadly protect ecological attributes and their services. To evaluate these 2 options, we examined 23 fish families in 152 unique sites in the Western and Northern Madagascar Ecoregion to test for spatial aggregation, environmental, habitat, and human influences on the fish communities. We found that there were 10 distinct communities of fish and that they were widely distributed in the region. Biomass and diversity were closely associated with the community types and showed weak spatial aggregation and environmental and market influences
    • 

    corecore