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Bridgewater House, Whitworth Street, Manchester, United Kingdom, 10 The Nature Conservancy, Newmarket, United Kingdom, 11 Université de la Méditerranée, Centre
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Abstract

Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change.
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Introduction

Coral reefs are one of the ecosystems most threatened by

climate variability and change [1–3]. Reef corals, the building

blocks of carbonate reefs, have a restricted thermal tolerance,

resulting in ‘bleaching’ events (loss of symbiotic algae) when sea

surface temperatures rise above a given threshold [4]. This has

contributed to widespread loss of live coral cover [5–8], the

restructuring of benthic community composition [9] and has

resulted in dire predictions for the future persistence of coral-

dominated ecosystems within decadal time scales [10,11]. There is

now a need to understand resultant large-scale implications for

other components of the ecosystem, which, to date, have received

limited attention or been the focus of local studies [12–14].

Assessing ecosystem trends and patterns at regional scales is

necessary if informed management choices are to be made that

will mitigate the effects of large-scale climate disturbance.

Importantly, there is a need to test key paradigms, such as the

ability of no-take areas (NTAs) to enhance recovery from climate

change impacts [2], and the potential for herbivorous fish to

increase in abundance following coral mortality and functionally

compensate for increased algal coverage [15].

At large scales, remote pristine areas may have a greater

capacity to absorb climate impacts and maintain a coral

dominated and diverse ecosystem [16]. However, most coral reef

NTAs are small and embedded in heavily fished and degraded
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environments [8,17]. Assessing the importance of local manage-

ment for conserving coral reefs in the context of global change has

been identified as a key research challenge for coral reef scientists

[18]. Although there are expectations that NTAs will promote

resilience and faster recovery from climate disturbance [19], site-

specific studies suggest this may not be the case [12,20,21], and the

effectiveness of such management needs to be assessed across

regional spatial scales.

Grazing by herbivores, by creating space for invertebrate larval

settlement, is thought to be key to maintaining reefs in a coral

dominated state [22,8,23]. However, it is increasingly evident that

the majority of herbivorous fish in the Indo-Pacific will crop turf

algae, but feed less on or avoid erect macroalgae once it has

developed [24,25]. Following large-scale disturbances that open up

large amounts of space on reefs, such as mass coral bleaching,

herbivores may become swamped by the biomass of the new algal

resource [26] and reefs can progress on a trajectory to macroalgal

dominance [27]. It is therefore important to assess whether

herbivorous reef fish increase in abundance following large-scale

coral loss and thus have the ability to prevent reefs from becoming

dominated by erect macroalgae.

Coral mortality through climate induced bleaching was partic-

ularly severe in the Indian Ocean in 1998, with ,45% of coral

cover lost across the region [28], although the effects were spatially

variable [7,9]. We assess the longer-term effects of this event in

fished areas and NTAs across 7 countries, 66 sites and 26 degrees of

latitude. Specifically, we conducted a targeted research program

whereby the original investigators who collected comprehensive

benthic and fish assemblage data from Maldives, Chagos,

Seychelles, Kenya, Tanzania, Mauritius, and Réunion in the mid-

1990s repeated their surveys post-bleaching, in 2005. We use

continuous model Bayesian meta-analysis to quantify effects of

changes in live coral cover and physical complexity of reefs on the

diversity, size structure, trophic structure and abundance of reef fish.

The Bayesian approach not only structures the inherent uncertainty

in monitoring data from multiple sources, but also allows belief

statements to be made regarding future change [29]. With ever

more frequent bleaching events predicted [11], quantitative

predictions regarding how fish will respond to future declines in

coral cover over large spatial scales are needed to guide regional

conservation planning, adaptation and mitigation strategies.

Results

Change in hard coral cover across the region between the mid

1990s and 2005 varied geographically (Figure 1). The changes

reported here represent the combined effects of coral loss in 1998

and any subsequent recovery to 2005. The greatest declines were

apparent through the low latitude island states of Maldives,

Chagos, and Seychelles. Kenyan and Tanzanian nationally

protected sites experienced moderate declines, while Mauritius

and Réunion sustained the smallest declines, and coral cover

increased in Kenyan and Tanzanian fished sites (Figure 1).

Assessing change in coral cover at relevant scales, that consider

location, management and habitat type, indicates that 10 of our 19

study locations exhibit declines that depart significantly from zero

(Figure 2A). The study incorporated nine no-take areas (NTAs)

across four countries (two in Seychelles, four in Kenya, two in

Tanzania and the long-term de-facto protection of reefs of the

Chagos archipelago [30]). A greater proportion of NTAs (71%)

than fished (42%) locations showed significant declines in coral

cover over the study period. Based on bootstrapped 95%

confidence limits, there was no evidence to suggest the percent

change in coral cover differed between NTAs and fished areas,

and in some cases declines were significantly greater in NTAs

(Figure 2A). Importantly, the NTAs had greater starting coral

covers than adjacent fished areas, which, as NTAs and fished areas

declined to similar final covers (Table 1)(with the exception of

some of the less impacted Tanzanian sites), meant the NTAs had

further to fall.

It is clear that the impacts of the 1998 bleaching event were

highly variable across the region, and provide a continuum against

which to test secondary consequences, such as the effects of coral

loss on fish assemblages. Recent developments in assessing the

effects of coral disturbance on fish have highlighted the

importance of eroding structural complexity in driving responses

[13,31], which, as erosion of coral structures can take 5–10 years,

explains the much smaller impacts on fish shortly after coral

mortality [15]. Structural complexity was quantified at 50 of our

66 sites. Importantly, there was a strong correlation between loss

in coral cover and loss in structural complexity across the region

(r = 0.77, P,0.001, Figure 2B). The strong collinearity in the two

measures precludes independent assessment of variables, and

therefore the effects of changing coral cover on fish identified in

the Bayesian meta-analyses are likely to result from a combination

of loss in coral cover and structural complexity.

Coral loss predicted declines in reef-fish species richness, and

abundance of obligate corallivores, planktivores and fishes

,20 cm throughout the western Indian Ocean (Table 2). We

tested five possible trajectory descriptors in each case, but only

found evidence for linear fits between coral decline and change in

groupings of the fish community. Trends in species richness were

significant, but weak, and largely driven by the Seychelles and

Mafia Island (Figure 3A). There was substantial evidence for a 1:1

relationship between changes in obligate corallivore abundance

and percent coral cover (Figure 3B). From these results we

estimate, given any future 50% decline in coral cover, there is a

76% probability of equivalent declines in obligate corallivores at

any given site in the western Indian Ocean. The relationship

between change in diurnal planktivore abundance and coral cover

was relatively strong; given a future 50% decline in coral cover, we

estimate a 68% probability of observing declines in planktivore

abundance (Figure 3E). We found no relationship between a loss of

coral and change in abundance of herbivore and mixed diet feeder

groups (Figure 3C,D).

When species were grouped by their maximum attainable size, a

clear trend was apparent for species ,20 cm total length, but no

relationship was observed for 21–40 cm, 41–60 cm or .60 cm

groupings (Figure 4A; Table 2). Given a future 50% decline in coral

cover, we estimate a 52% probability of observing declines in the

abundance of fish species with maximum body lengths ,20 cm.

Within this size class, planktivores make up a considerable portion

of the abundance (44%), and herbivores and mixed diet feeders also

contribute substantially (28% and 20% respectively), but coralli-

vores have limited input (8%) (Figure 4B). Separate analyses of

trophic groups within the ,20 cm size category highlights that,

along with obligate corallivores and planktivores, there was also

evidence of declines in herbivores (Table 2).

We only found weak evidence for differences between NTAs

and fished areas for change in diurnal planktivore abundance and

small-bodied herbivore abundance (,20 cm) (Table 3). In both

cases the negative relationship between fish abundance and coral

decline was greater for the NTAs, however there was equal

support for model Mc with no differences between types of

management (Table 3). Importantly, irrespective of body size and

trophic categorization, NTAs provided no clear benefits for any of

the fish groups in terms of their change in response to coral

decline.

Ocean-Scale Reef Integrity
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Figure 1. Change in coral cover at sites across the western Indian Ocean. Green and red symbols represent increases and decreases in coral
cover respectively. Symbols with solid borders are sites in NTAs; Seychelles data include two NTAs, Kenya includes four, Tanzania two and the Chagos
archipelago is a de-facto NTA. Data represent 66 sites across the region. Numbers in key (size of bubble) are percent changes between mid 1990s and
2005. Map produced using ESRI data and ArcGIS 9.
doi:10.1371/journal.pone.0003039.g001

Figure 2. Change in coral cover and reef structural complexity. (A) Change in live coral cover at meaningful biogeographical aggregations
and by management strategy. Three habitat types in Seychelles each replicated in the two NTAs. Kenyan protected represents four NTAs.
Bootstrapped 95% confidence intervals indicate whether mean change departs significantly from zero. Locations ordered by magnitude of coral
decline. (B) Correlation between change in live coral cover and change in structural complexity across the region. N Mafia Island, e Seychelles, m
Chagos, & Maldives, ¤ Kenya, n Tanzania.
doi:10.1371/journal.pone.0003039.g002

Ocean-Scale Reef Integrity
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Discussion

We have identified spatially variable declines in coral cover, reef

structural complexity, fish species richness and the abundance of

various feeding and size groups of reef fish across the Indian

Ocean following the 1998 bleaching event. These changes are

substantial for some groups, and indicate little insurance offered by

current small-scale NTA management across the region. The

spatial patterns present in our data provide important information

for future conservation planning and generic lessons for managing

whole coral reef ecosystems in a changing climate.

There was little difference in the decline of coral cover between

NTAs and fished areas across the Indian Ocean, with some

evidence for greater declines within NTAs. This result is likely due

to NTAs often being sited in areas where the cover of Acropora and

other thermally-sensitive and branching coral species is high [20], or

may be because fishing gears reduce cover of these coral species in

fished areas. Our analysis also indicated little difference between

NTAs and fished areas for those fish groups that declined in

response to coral loss. The only indication of a differential response

was the greater decline in NTAs for planktivores and small bodied

herbivores. Large, remote and pristine areas seem to be resilient to a

wide range of disturbances [16], which has led to calls to assess the

effectiveness of NTAs in conserving coral reefs through climate

disturbance [18]. One clear difference to these remote areas is that

NTAs on reefs are typically small and surrounded by much larger

areas that are modified by exploitation [8,17]. As we do not have

repeat temporal data since the initial coral loss in 1998, we can not

explicitly infer recovery rates from our data, however the NTAs we

studied show no evidence of being more resistant to declines in coral

and fish groups following coral bleaching and it seems likely that,

over this time scale, recovery rates are no different between NTAs

and fished areas, as has been shown for some of the NTAs where

temporal data were available [21].

We detected declines in fish species richness across the western

Indian Ocean in response to loss of live coral cover. Although only

Table 1. Mean coral cover before (mid-1990s) and after
(2005) the 1998 bleaching event across the Indian Ocean.

Location

% Coral
Cover
mid-1990s 6SE

% Coral
Cover
2005 6SE

Maldives, North Male (3) 15.5 7.5 10.9 3.2

Maldives, South Male (2) 43.9 3.6 8.0 1.2

Chagos Protected (9) 31.2 4.0 22.8 2.9

Seychelles Carbonate Reefs (5) 34.6 2.7 5.6 3.1

Seychelles Carbonate Protected (2) 44.9 4.8 5.1 4.5

Seychelles Granite Reefs (5) 14.8 2.0 8.2 2.3

Seychelles Granite Protected (2) 30.9 7.6 7.5 6.4

Seychelles Patch Reefs (5) 20.0 1.5 10.9 5.1

Seychelles Patch Protected (2) 46.4 7.8 3.6 3.0

Kenya Fished (4) 18.9 5.2 20.0 4.0

Kenya Protected (4) 34.8 4.5 26.8 8.1

Tanzania Dar (4) 42.6 11.9 70.0 3.2

Tanzania Tanga (4) 23.9 7.5 27.8 6.8

Tanzania Zanzibar (2) 48.5 3.8 48.3 3.3

Tanzania Zanzibar Protected (2) 62.7 11.1 61.5 2.4

Tanzania, Mafia Island, Protected (2) 33.0 N/A 0.1 N/A

Reunion Flat (2) 42.5 24.3 37.0 10.9

Reunion Slope (2) 42.0 5.0 28.4 4.5

Mauritius (5) 45.3 9.5 41.1 6.7

Sites aggregated at representative geographic scales that consider location,
management and habitat type. Three habitat types in Seychelles each
replicated in the two NTAs. Kenyan protected represents four NTAs. Number of
sites per location given in brackets. Note, Tanzania, Mafia Island, received no-
take status in 2000.
doi:10.1371/journal.pone.0003039.t001

Table 2. Continuous model Bayesian meta-analysis parameter estimates from the best-fitting models (see Table 3) for reef fish
metrics in the western Indian Ocean.

Metric Model b̂0 (intercept) b̂coral (slope) b̂protected (intercept) b̂protected (slope)

Species richness Mc 0.00 (0.03) [20.07, 0.06] 0.10 (0.02) [0.06, 0.14] - -

Obligate corallivores Mc 20.26 (0.21) [20.66, 0.16] 1.05 (0.14) [0.77, 1.30] - -

Herbivores M0 20.28 (0.08) [20.45, 20.12] - - -

Mixed-diet feeders M0 20.18 (0.06) [20.28, 0.08] - - -

Planktivores Mcp 20.42 (0.16) [20.74, 20.10] 0.52 (0.16) [0.28, 0.77] 1.02 (0.35) [0.35, 1.69] 0.61 (0.24) [0.10, 1.07]

Planktivores Mc 20.15 (0.15) [20.44, 0.14] 0.68 (0.10) [0.48, 0.87] - -

,20 cm Mc 20.17 (0.09) [20.35, 0.00] 0.37 (0.06) [0.28, 0.49] - -

21–40 cm M0 20.21 (0.09) [20.40, 20.05] - - -

41–60 cm M0 20.59 (0.17) [20.91, 20.26] - - -

.61 cm M0 20.37 (0.21) [20.77, 0.04] - - -

,20 cm obligate corallivores Mc 20.39 (0.19) [20.77, 20.00] 0.94 (0.13) [0.69, 1.19] - -

,20 cm herbivores Mc 20.19 (0.16) [20.51, 0.13] 0.50 (0.10) [0.29, 0.71] - -

,20 cm herbivores Mcp 20.28 (0.18) [20.65, 0.08] 0.24 (0.14) [20.05, 0.53] 0.37 (0.35) [20.33, 1.06] 0.53 (0.21) [0.12, 0.95]

,20 cm mixed diet feeders M0 20.46 (0.06) [20.58, 20.34] - - -

,20 cm planktivores Mc 20.10 (0.16) [20.43, 0.23] 0.57 (0.110 [0.35, 0.78] - -

Estimates for groups with equivalent model fits are provided for both models. Values in parentheses are standard deviations; values in square brackets are 95% credible
intervals.
doi:10.1371/journal.pone.0003039.t002

Ocean-Scale Reef Integrity
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a small proportion of species are heavily coral dependent, most

species are reliant on the reef matrix at some stage in their life

history, and change in species richness was likely due to loss in the

physical structure of the reef, rather than live coral [13–15,31].

The variability in loss of structural complexity may explain why

the trend for species richness was not stronger, with locations such

as Chagos, where recovery of coral has been rapid, potentially

retaining structural complexity in the interim. Although loss of

structural complexity was the most likely driver of the region-wide

decline in species richness, some studies have highlighted that live

coral can be an important settlement cue for larval fish [12,32] and

the nature of this relationship is an important area for future

research.

Although previous studies have identified obligate corallivores

as a functional group vulnerable to declines in coral cover [14,15],

this is the first study to demonstrate declines over such a large

spatial scale. We have also identified a 1:1 linear relationship

between coral loss and obligate corallivore decline, suggesting their

survival on the reef is tightly linked to coral cover and changes in

obligate corallivore abundance should be easy to predict based on

changes to benthic cover. The diurnal planktivores in the study

were largely small-bodied species from the damselfish family

Figure 3. Change in fish groups in response to coral decline. Continuous model Bayesian meta-analysis of relationships between decline in
coral cover and change in (A) species richness of fish assemblages, and (B) abundance of obligate corallivores, (C) herbivores, (D) mixed diet feeders,
(E) planktivores. Scale as converted to percent change indicated in top right panel. Linear trend lines only presented where significant model fits were
recorded. Green symbols indicate sites in NTAs, blue symbols indicate sites in fished areas. Inner dashed line represents 95% credible interval on the
regression and outer dashed line represents the 95% prediction interval. N Mafia Island, e Seychelles, m Chagos, & Maldives, ¤ Kenya, n Tanzania, %
Réunion, # Mauritius. Movement of points along the x-axis among panels reflects model-structured uncertainty present among studies.
doi:10.1371/journal.pone.0003039.g003

Ocean-Scale Reef Integrity
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(.90% contribution to group) that are often closely associated

with the reef matrix [33,34]. Their decline is most likely due to

predation vulnerability, linked to loss of coral and structural

collapse [13,31]. Planktivores and corallivores showed the

strongest relationships of all groups to declining coral cover and

are likely to be the groups most threatened from the predicted

ongoing decline in global reef health [14,15].

Although herbivores are hypothesized to increase in abundance

following coral decline due to a greater availability of algal

resources, previous studies have reported high variation in this

relationship and have often been conducted shortly after

disturbances, limiting their ability to detect demographic changes

[15]. Here we tested this hypothesis across large spatial and

temporal scales where the assemblage had a moderate time to

respond. Herbivores are thought to be a key functional group,

responsible for the resilience of reef systems by controlling algal

growth [8,23,35] and ultimately allowing settlement of new coral

recruits [36]. However, our data show that the proliferation of

algae that follows extensive coral mortality [12,13,37,38] was

unlikely to be controlled by a corresponding increase in

herbivorous fish abundance. Changes to size structure and

biomass of herbivore stocks cannot be ruled out and may initially

encourage increased consumption and control of algae. However,

studies from Seychelles suggest such changes may be indicative of

future declines in herbivore abundance and biomass due to a loss

of refuge from predators, leading to reduced recruitment to adult

size classes [20].

The mixed diet feeding group also showed no response to

declining coral cover. This group of fish includes species from

families such as Lethrinidae, Mullidae, Lutjanidae, and Labridae,

many of which are habitat generalists, foraging and recruiting to

non-coral reef habitats such as seagrass [39]. Species in these

groups also tend to forage over fairly large spatial scales, indicating

a lack of reliance on specific habitat types. Due to this decoupling

of reliance on reef habitat and the potential benefits they may

glean from increased food resources, this may be the group that

will be sustained in the long term, although a large amount of

variation can be expected at the species level [15], leading to

changes in community composition.

Small-bodied fish are known to be more reliant on the reef

matrix, inhabit narrower niches, and be more vulnerable to

predation [33,34]. Our analyses highlight the vulnerability of

small-bodied species to coral and structural complexity loss.

Within this size category, obligate corallivore and planktivore

groups showed strong declines. Interestingly, there was also a

reduction in abundance of small-bodied herbivores. Although

herbivore abundance may not be declining overall (Figure 3C), the

reduction of these small-bodied species is of concern as they

perform important functional roles on coral reefs [40]. Small

mixed diet feeders again showed no trend, demonstrating the

resistance of species with generalist life history traits to coral loss.

There are some obvious limitations in our data, such as the

timeframe between surveys and the influence of any change in

management / fishing pressure. In most cases management and

fishing pressure have not changed greatly over the ten years

studied. The one main exception is Mombasa Marine National

Park, Kenya, where species richness and fish density have

increased owing to management action [17]. Although such

effects may have a slight influence on the results, the relationship

between reef fish and change in coral cover (and its association

with loss in physical structure) is a strong signal within the regional

data and is consistent with current ecological understanding of

disturbance effects on coral reefs [14,15]. A potential problem

when conducting meta-analyses is publication bias, whereby data

sets are not located or included in the analyses [41]. This is not a

problem in the current study as we conducted a targeted research

program where all comprehensive studies from the mid 1990’s

were repeated as part of the study itself. Finally, the study design

Figure 4. Change in small bodied fish in response to coral
decline. (A) Continuous model Bayesian meta-analysis of relationship
between decline in coral cover and change in fish ,20 cm maximum
attainable size. Green symbols indicate sites in NTAs, blue symbols
indicate sites in fished areas. Inner dashed line represents 95% credible
interval on the regression and outer dashed line represents the 95%
prediction interval. N Mafia Island, e Seychelles, m Chagos, & Maldives,
¤ Kenya, n Tanzania, % Réunion, # Mauritius. (B) Percent contribution
of five trophic groups to the starting (mid-1990’s) abundance of fish
,20 cm maximum attainable body length across the region. Black = -
planktivores, dark grey = piscivores (barely present on plot; 0.05%),
white = Mixed diet feeders, grey = herbivores, light grey = obligate
corallivores.
doi:10.1371/journal.pone.0003039.g004

Table 3. Model-selection results for continuous model
Bayesian meta-analysis in the western Indian Ocean using the
Bayesian Information Criterion (BIC).

Metric M0 Mc Mcp

Species richness 17.53 1.64 6.35

Obligate corallivores 282.90 248.38 256.38

Herbivores 145.83 149.61 157.35

Mixed-diet feeders 83.64 87.40 91.90

Planktivores 237.66 205.27 204.30

,20 cm 165.25 138.72 140.60

21–40 cm 146.91 150.00 158.17

41–60 cm 231.69 231.35 235.95

.61 cm 261.85 266.02 272.32

,20 cm obligate corallivores 275.96 238.91 246.80

,20 cm herbivores 230.91 214.86 216.53

,20 cm mixed diet feeders 94.93 99.11 106.16

,20 cm planktivores 237.76 218.23 222.13

Models include a null model of no relationship (M0), a model including a
relationship between changes in coral cover and reef fish metrics (Mc), and a
fish-coral model that allows for differences between protected and unprotected
sites (Mcp). Models highlighted in bold have the greatest support, given the
data; models with BIC differences of ,2 are considered to have equal support.
doi:10.1371/journal.pone.0003039.t003
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does not consider the impact of disturbances after the 1998 coral

bleaching event. However, the December 2004 tsunami is thought

to have had negligible effects on coral reefs in the western Indian

Ocean [42]. Furthermore, any other ensuing disturbances are just

as likely to have influenced NTAs as fished areas and reflect

increasing disturbance frequencies occurring on coral reefs

globally [2,8].

Our analyses highlight great geographic variation in the impact

of coral bleaching across the region, with the Seychelles suffering

the greatest in terms of coral loss and associated effects on fish, and

the Mascarene Islands (Réunion and Mauritius) suffering the least.

These trends could be due to several factors: 1) Prevailing currents

and variation in temperatures have been identified as key

determinants of coral mortality in the region, likely reducing

mortality in the Mascarene Islands in particular [11,43]. 2) Well

connected reef systems are expected to contain the pockets of

refugia required for landscape-scale recovery [44]. This is evident

when comparing recovery of the well connected mainland reefs of

Kenya and Tanzania and the geographically extensive Chagos

and Maldives to the geographically small and isolated inner

Seychelles. 3) The inner Seychelles is a shallow continental shelf

basin, with most fringing reefs extending to only 7–9 m depth.

This ‘bathtub effect’ likely led to extensive mortality in 1998 and

precluded any depth refuge below which corals could survive.

Where live coral extends to 40–50 m depth, such as in the atolls of

Chagos or the islands of Réunion and Mauritius, a depth refuge of

broodstock may encourage faster recovery of corals at shallower

depths [45]. 4) Finally, the atolls surveyed in Chagos are

uninhabited and off limits to reef fishing. The lack of multiple

anthropogenic stresses that most other reef systems endure may

have helped promote recovery from the disturbance [16,18].

The 1998 bleaching event had, and is still having, extensive

effects across the western Indian Ocean. Although ocean-scale

coral reef integrity has been lost, it is positive to see that effects

were spatially variable and that in some locations the indirect

effects on fish assemblages and likely implications for human

society have been small. Geography seems to be a key determinant

in the ability of reefs to absorb and recover from such large-scale

disturbances and this should be considered for other regions likely

to suffer similar large-scale disturbances in the future. Although

there was no evidence that existing NTAs are promoting recovery

of coral, these NTAs are still supporting a greater biomass of

fishery stocks [17,20], indicating long-term fisheries management

should not be compromised. There is, however, a need for new

NTAs, incorporated into existing networks that protect source

reefs resilient to large-scale disturbance, and areas likely to retain

their physical structure. This will help sustain the upstream

spawning stocks of corals and specialised fish species required for

landscape-scale recovery. Such management is likely to be

unsuccessful in isolation, and improved management of entire

reef systems, reducing the stresses and pressures to areas outside

NTAs will be necessary to maximise the capacity for systems to

recover from large scale and ongoing disturbance.

Materials and Methods

We identified all field studies that had comprehensively

surveyed reef fish assemblages and associated benthic composition

and structure from the western Indian Ocean region from 1990 to

before the 1998 coral bleaching event (majority 1994–95). This

resulted in eight separate large-scale studies (across seven

countries). Original investigators returned to their study locations

in 2005 to repeat the surveys, using field protocols identical to

those used in the original surveys. The protocols were standardised

within, rather than among study locations as it is more robust to

quantify effect sizes in this way and then standardise when

comparing among studies. Where the original investigator could

not return, an experienced surveyor from the team repeated the

work. An associated field study workshop for the project, which

involved many of the researchers from the region, found

experienced observer bias to be a very small component of the

variation in fish counts [46]. All reef surveys were conducted on

the reef flat or shallow reef slope. The abundance of all diurnally

active, non-cryptic, reef-associated fish was assessed during each

survey, however methods varied among study locations from point

counts of differing dimensions to belt transects of differing

dimensions. Replication also varied from 3 to 16. This resulted

in a survey area per site of ,200 m2 to ,2500 m2. Benthic

quantification also varied in spatial scale and from visual estimates

to line intercept transects, but the results are expected to be

comparable [47]. Estimates of change in live coral cover were

calculated and plotted on a map by country and management

strategy and at a more aggregated level with 95% confidence

limits. Measures of structural complexity also varied and included

visual assessments of reef topography, the linear versus contour

method and measures of reef height. However these measures

were found to be strongly correlated [47] and these correlation

coefficients were used to standardise them to a common scale. The

relationship between percent change in coral cover and percent

change in structural complexity was assessed by correlation

analysis. The presence of variation in field methods is routine in

meta-analytical studies, and thus the choice of effect size

calculation and variance weighting is integral to the comparability

of study results [48].

Effect size
Meta-analysis frequently employs unitless effect size metrics to

standardize the information present among accumulated studies.

The potential to observe changes in a before and after comparison

can be greatly influenced by initial values at a given location; sites

with larger initial values have a greater scope to reveal change

than those with low values [48]. To achieve a comparable metric

at all locations and to account for initial cover / values, we

calculated effect sizes as the percent change between the mid

1990s and 2005 [49];

%differenceD~ Aa,i{Ab,ið Þ=Ab,i½ �|100 ð1Þ

where Ab and Aa were mean values at sites in the mid 1990’s and

2005 respectively. We did not account for study duration [48] as

we made the informed assumption that the greatest changes

occurred in 1998 and our measures in the mid-1990’s are an

appropriate estimate of pre-bleaching conditions. Furthermore as

sampling date was standardised for post-1998 surveys, any

incorporation of duration could unduly bias effect sizes based on

pre-disturbance study dates. Finally, we are estimating a

magnitude of change, rather than a rate of change, which would

require a different effect size metric [48]. We calculated individual

effect sizes for change in coral cover, structural complexity, fish

species richness, and fish density in four functional groups for

which data were available at the majority of sites (obligate

corallivores, herbivores, planktivores, and mixed-diet fishes

assigned using regional fish identification guides, published

literature and http://www.fishbase.org), for four size classes of

fish species (maximum attainable size ,20 cm, 21–40 cm, 41–

60 cm, and .60 cm) and for the same four functional groups

listed above within the ,20 cm maximum attainable size

category. Herbivores include all those species that feed on algae
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and or detrital aggregates from the epilithic algal matrix. Because

percent-change losses have a strongly right-tailed distribution, i.e.

a maximum potential decline of 100%, but a potentially limitless

increase, we transformed all of the DT values to be balanced

around zero following Kaiser et al. [49]:

DT~loge 1z D=101½ �ð Þ: ð2Þ

This transformation prevents overestimates of increases and

underestimates of declines, where a maximum potential decline

has a value of 24.6 and a maximum increase +4.6. The

transformation approximately normalises the error distribution

and stabilises its variance [49]. Raw data were available for many

of the original studies, allowing us to estimate average effect-sizes

at some locations. Because data were collected from the same sites

but not the same transects, we estimated effect-size means and

variances at these sites using non-parametric bootstrapping of the

before and after observations (R = 9999) [50] with (1) and (2), by

randomly matching before-after pairs at each iteration. This

generated sample means and expected variance ranges for many,

but not all, of the study locations.

Bayesian meta-analysis
We evaluated evidence for a regional relationship between reef

fish and coral cover using an area-variance weighting scheme

implemented in a Bayesian meta-analysis framework. The use of

area surveyed as a weighting scheme in coral reef meta-analyses

has become widespread because actual variance will depend on

individual measurement size and replication [48]. The Bayesian

approach allowed us to model the hierarchical structure of the

data, estimate the magnitude of regional-scale effects, and to

specify a level of uncertainty about individual study estimates. By

sharing information among studies, this approach maximized the

strength of inferences made across the entire range of meta-data

used, allowing us to make probability statements about the

likelihood of reef fish declines given potential future changes in

coral conditions. Although we tested five different ecologically

meaningful response trajectories (asymptotic, quadratic, logistic,

linear and exponential), we found no model-based evidence for

non-linear responses based on Bayesian Information Criterion

(BIC) scores among candidate models. We therefore quantified the

regional fish community response between the mid 1990s and

2005 using a null model (intercept-only; M0) and exchangeable

linear model (Mc) of coral effect size bcoral,

DT
f ,j*N hf ,j ,s

2
jf

� �
, ð3Þ

DT
c,j*N hc,j ,s

2
jc

� �
, ð4Þ

s2
j ~

log areamaxð Þ
log areajð Þ

� �
s2

j1, if original data unavailable

log areamaxð Þ
log areajð Þ

� �
s2

jb , if original data available

8>>><
>>>:

9>>>=
>>>;
ð5Þ

hf ,j*N b0zbcoral hc,j

� �
,s2

h

� �
, ð6Þ

where DT
f ,j is the study point estimate of the fish effect size hf,j from

the jth study; DT
c,j is the study point estimate of coral effect size hc,j in

the jth study; s2
j is the study fish or coral variance that is assumed

known; s2
j1 is the maximum of the known (bootstrap estimated)

site-level variances for fish or coral among the studies used; areamax

is the maximum reef area surveyed; s2
jb is the bootstrap-estimated

site-level variance for sites where raw data was available; and s2
h is

the estimated regional variance. The area-weighted s2
j

;
s were

likely to be conservative because they were scaled down from the

largest known study variance, expressing an equal or greater level

of uncertainty than any of the known sample variances, thus

weighting the variance based on the area of reef surveyed.

This continuous meta-analysis model was fully-specified by non-

informative prior distributions for the estimated parameters,

b0*N 0,1000ð Þ ð7Þ

s2
h*U 0,1000ð Þ ð8Þ

bcoral*N 0,1000ð Þ ð9Þ

In addition to the coral effects model, we included a NTA model

to estimate the effects of fishery protection on changes in coral and

fish metrics. This protection model (Mcp) included a modification

of equation (6) to include a dummy variable (status) that allowed

the slopes (bprotection) and intercepts (bprot 0) of the coral relationship

to vary between NTAs and fished areas:

hf ,j*N b0zbprot 0 statusð Þzbcoral hc,j

� ��
zbcoral hc,j

� �
� bprotection statusð Þ,s2

h

�
:

ð10Þ

Priors for all slopes and intercepts were as specified by equation (9).

We implemented both regional models using the PyMC Markov-

Chain Monte Carlo (MCMC) toolkit for the Python programming

language. Meta-analytical models were run for 20 000 iterations

with a 10 000 iteration burn-in period. We evaluated model

convergence using Geweke’s method [50]. Model goodness-of-fit

(GOF) was assessed using the deviance simulation methods in

PyMC, where ideal models yield GOF values near 0.5, providing

evidence of equivalence between simulated and observed deviance

[51]. Our Bayesian meta-analyses had GOF scores between 0.46

and 0.50 for all fish metrics, confirming good model fits for

estimating effect-size relationships, and model convergence was

deemed adequate in every instance [51]. Site-level posterior

distributions shrunk towards the regional mean, where the

extreme high- and low-value effect sizes had a reduced effect on

the overall estimates. Relative evidence for each model was

evaluated using the Bayesian Information Criterion (BIC) [52] and

the uncertainty surrounding each posterior parameter estimate.

From the area of highest posterior density in the posterior

distribution of each model parameter we obtained Bayesian

credible intervals (CI) that defined a 95% probability of a given

parameter lying within the CI range. During each MCMC

simulation we also sampled from the full conditional of the model

and data to construct predictive intervals (PI) that defined a 95%

probability of future observations being within the PI range. The

PI interval values allowed us to make probability statements

about the response of fish assemblage groups to future coral

depletion.
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