170 research outputs found

    Critical behavior in a cross-situational lexicon learning scenario

    Get PDF
    The associationist account for early word-learning is based on the co-occurrence between objects and words. Here we examine the performance of a simple associative learning algorithm for acquiring the referents of words in a cross-situational scenario affected by noise produced by out-of-context words. We find a critical value of the noise parameter γc\gamma_c above which learning is impossible. We use finite-size scaling to show that the sharpness of the transition persists across a region of order τ1/2\tau^{-1/2} about γc\gamma_c, where τ\tau is the number of learning trials, as well as to obtain the learning error (scaling function) in the critical region. In addition, we show that the distribution of durations of periods when the learning error is zero is a power law with exponent -3/2 at the critical point

    Multistable behavior above synchronization in a locally coupled Kuramoto model

    Full text link
    A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical synchronization transition. We find a richness of solutions when the coupling increases, which exists only within a solvability region (SR). We also find that they posses different characteristics, depending on the section of the boundary of the SR where the solutions appear. We study the birth of these solutions and how they evolve when {K} increases, and determine the diagram of solutions in phase space.Comment: 8 pages, 10 figure

    Choice Architecture Cueing to Healthier Dietary Choices and Physical Activity at the Workplace:Implementation and Feasibility Evaluation

    Get PDF
    Redesigning choice environments appears a promising approach to encourage healthier eating and physical activity, but little evidence exists of the feasibility of this approach in real-world settings. The aim of this paper is to portray the implementation and feasibility assessment of a 12-month mixed-methods intervention study, StopDia at Work, targeting the environment of 53 diverse worksites. The intervention was conducted within a type 2 diabetes prevention study, StopDia. We assessed feasibility through the fidelity, facilitators and barriers, and maintenance of implementation, building on implementer interviews (n = 61 informants) and observations of the worksites at six (t1) and twelve months (t2). We analysed quantitative data with Kruskall–Wallis and Mann–Whitney U tests and qualitative data with content analysis. Intervention sites altogether implemented 23 various choice architectural strategies (median 3, range 0–14 strategies/site), employing 21 behaviour change mechanisms. Quantitative analysis found implementation was successful in 66%, imperfect in 25%, and failed in 9% of evaluated cases. These ratings were independent of the ease of implementation of applied strategies and reminders that implementers received. Researchers’ assistance in intervention launch (p = 0.02) and direct contact to intervention sites (p < 0.001) predicted higher fidelity at t1, but not at t2. Qualitative content analysis identified facilitators and barriers related to the organisation, intervention, worksite environment, implementer, and user. Contributors of successful implementation included apt implementers, sufficient implementer training, careful planning, integration into worksite values and activities, and management support. After the study, 49% of the worksites intended to maintain the implementation in some form. Overall, the choice architecture approach seems suitable for workplace health promotion, but a range of practicalities warrant consideration while designing real-world implementation

    State of the Art: Small Spacecraft Technology

    Get PDF
    This report provides an overview of the current state-of-the-art of small spacecraft technology, with particular emphasis placed on the state-of-the-art of CubeSat-related technology. It was first commissioned by NASAs Small Spacecraft Technology Program (SSTP) in mid-2013 in response to the rapid growth in interest in using small spacecraft for many types of missions in Earth orbit and beyond, and was revised in mid-2015 and 2018. This work was funded by the Space Technology Mission Directorate (STMD). For the sake of this assessment, small spacecraft are defined to be spacecraft with a mass less than 180 kg. This report provides a summary of the state-of-the-art for each of the following small spacecraft technology domains: Complete Spacecraft, Power, Propulsion, Guidance Navigation and Control, Structures, Materials and Mechanisms, Thermal Control, Command and Data Handling, Communications, Integration, Launch and Deployment, Ground Data Systems and Operations, and Passive Deorbit Devices

    SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape

    Get PDF
    Characterizing SARS-CoV-2 evolution in specific geographies may help predict properties of the variants that come from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from ancestral virus in a person with advanced HIV disease in South Africa; this person was infected prior to emergence of the Beta and Delta variants. We longitudinally tracked the evolved virus and tested it against self-plasma and convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, but it evolved a multitude of mutations found in Omicron and other variants. It showed substantial but incomplete Pfizer BNT162b2 escape, weak neutralization by self-plasma, and despite pre-dating Delta, it also showed extensive escape of Delta infection-elicited neutralization. This example is consistent with the notion that SARS-CoV-2 evolving in individual immune-compromised hosts, including those with advanced HIV disease, may gain immune escape of vaccines and enhanced escape of Delta immunity, and this has implications for vaccine breakthrough and reinfections

    The Inflammatory Response to Double Stranded DNA in Endothelial Cells Is Mediated by NFκB and TNFα

    Get PDF
    Endothelial cells represent an important barrier between the intravascular compartment and extravascular tissues, and therefore serve as key sensors, communicators, and amplifiers of danger signals in innate immunity and inflammation. Double stranded DNA (dsDNA) released from damaged host cells during injury or introduced by pathogens during infection, has emerged as a potent danger signal. While the dsDNA-mediated immune response has been extensively studied in immune cells, little is known about the direct and indirect effects of dsDNA on the vascular endothelium. In this study we show that direct dsDNA stimulation of endothelial cells induces a potent proinflammatory response as demonstrated by increased expression of ICAM1, E-selectin and VCAM1, and enhanced leukocyte adhesion. This response was dependent on the stress kinases JNK and p38 MAPK, required the activation of proinflammatory transcription factors NFκB and IRF3, and triggered the robust secretion of TNFα for sustained secondary activation of the endothelium. DNA-induced TNFα secretion proved to be essential in vivo, as mice deficient in the TNF receptor were unable to mount an acute inflammatory response to dsDNA. Our findings suggest that the endothelium plays an active role in mediating dsDNA-induced inflammatory responses, and implicate its importance in establishing an acute inflammatory response to sterile injury or systemic infection, where host or pathogen derived dsDNA may serve as a danger signal.United States. Dept. of Defense (CDMRP Predoctoral Training Award)National Institutes of Health (U.S.) (NIH BioMEMS Resource Center Grant P41 EB-002503)National Institutes of Health (U.S.) (NIH Grant RO1AI063795)Shriners Hospital for Childre

    Effect of tube diameter and capillary number on platelet margination and near-wall dynamics

    Get PDF
    The effect of tube diameter DD and capillary number CaCa on platelet margination in blood flow at 37%\approx 37\% tube haematocrit is investigated. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results show that margination is facilitated by a non-diffusive radial platelet transport. This effect is important near the edge of the cell-free layer, but it is only observed for Ca>0.2Ca > 0.2, when red blood cells are tank-treading rather than tumbling. It is also shown that platelet trapping in the cell-free layer is reversible for Ca0.2Ca \leq 0.2. Only for the smallest investigated tube (D=10μmD = 10 \mu\text{m}) margination is essentially independent of CaCa. Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of CaCa but increases with DD. Tumbling is suppressed by the strong confinement due to the relatively small cell-free layer thickness at 37%\approx 37\% tube haematocrit.Comment: 16 pages, 10 figure

    Three-dimensional Numerical Modeling and Computational Fluid Dynamics Simulations to Analyze and Improve Oxygen Availability in the AMC Bioartificial Liver

    Get PDF
    A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte distributions. Parameter studies were performed on each configuration to gain insight in fluid flow, shear stress distribution and oxygen availability in the AMC-BAL. We assessed the function of the internal oxygenator, the effect of changes in hepatocyte oxygen consumption parameters in time and the effect of the change from an experimental to a clinical setting. In addition, different methodologies were studied to improve cellular oxygen availability, i.e. external oxygenation of culture medium, culture medium flow rate, culture gas oxygen content (pO(2)) and the number of oxygenation capillaries. Standard operating conditions did not adequately provide all hepatocytes in the AMC-BAL with sufficient oxygen to maintain O(2) consumption at minimally 90% of maximal uptake rate. Cellular oxygen availability was optimized by increasing the number of gas capillaries and pO(2) of the oxygenation gas by a factor two. Pressure drop over the AMC-BAL and maximal shear stresses were low and not considered to be harmful. This information can be used to increase cellular efficiency and may ultimately lead to a more productive AMC-BAL

    Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines

    Get PDF
    Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle vaccine (RBD-NP) protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NP in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic

    Hierarchy of Scales in Language Dynamics

    Get PDF
    Methods and insights from statistical physics are finding an increasing variety of applications where one seeks to understand the emergent properties of a complex interacting system. One such area concerns the dynamics of language at a variety of levels of description, from the behaviour of individual agents learning simple artificial languages from each other, up to changes in the structure of languages shared by large groups of speakers over historical timescales. In this Colloquium, we survey a hierarchy of scales at which language and linguistic behaviour can be described, along with the main progress in understanding that has been made at each of them − much of which has come from the statistical physics community. We argue that future developments may arise by linking the different levels of the hierarchy together in a more coherent fashion, in particular where this allows more effective use of rich empirical data sets
    corecore