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Abstract I investigate the effect of tube diameter D
and red blood cell capillary number Ca (i.e. the ra-
tio of viscous to elastic forces) on platelet margina-

tion in blood flow at ≈ 37% tube haematocrit. The
system is modelled as three-dimensional suspension of
deformable red blood cells and nearly rigid platelets us-

ing a combination of the lattice-Boltzmann, immersed
boundary and finite element methods. Results of simu-
lations during the dynamics before the steady state has

been reached show that a non-diffusive radial platelet
transport facilitates margination. This non-diffusive ef-
fect is important near the edge of the cell-free layer,

but only for Ca > 0.2, when red blood cells are tank-
treading. I also show that platelet trapping in the cell-
free layer is reversible for Ca ≤ 0.2. Margination is es-

sentially independent of Ca only for the smallest inves-
tigated tube diameter (D = 10µm). Once platelets have
reached the cell-free layer, they tend to slide rather than

tumble. The tumbling rate is essentially independent of
Ca but increases with D. Strong confinement suppresses
tumbling due to the relatively small cell-free layer thick-

ness at ≈ 37% tube haematocrit.
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1 Introduction

The aim of this article is to investigate the effect of
tube diameter and capillary number (wall shear rate) on

the margination and near-wall dynamics of platelets in
blood flow via highly resolved three-dimensional com-
puter simulations. Platelet adhesion or activation are

not in the focus of this research.

Human blood is, by volume, composed of about
55% plasma (mostly water and proteins) and 45% sus-

pended blood cells. The majority of the blood cells
are red blood cells (RBCs), also called erythrocytes.
Other, less common blood cells are white blood cells

(leukocytes, one for 1000 RBCs) which form a sig-
nificant part of the immune system (Robertson et al,
2007) and platelets (thrombocytes, one for 15 RBCs)

(AlMomani et al, 2008). The volume fraction of the cel-
lular phase is called haematocrit Ht.

Platelets play an important role in the process of
blood clotting and the repair of damaged vessel walls

(endothelium). By mechanical contact with damaged
endothelium, platelets can be activated. The activation
involves a reorganisation of the platelet cytoskeleton,

making them more flexible (Fogelson and Guy, 2008).
Activated platelets are capable of forming networks via
fibrinogen and von Willebrand factor molecules giv-

ing rise to the build-up of blood clots (Kulkarni et al,
2000; Doggett et al, 2002). Non-activated platelets can
be considered as rigid discoid particles over the en-

tire physiological shear stress range (up to a few
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10Pa) (Goldsmith and Mason, 1967; Teirlinck et al,

1984; Turitto and Goldsmith, 1992).

The main task of platelets is to recognise regions of

damaged endothelium and to assist in its repair. Indeed,
the platelet concentration is, under certain conditions,
significantly increased close to the walls (Turitto et al,

1972; Goldsmith and Turitto, 1986). This near-wall ex-
cess is of physiological importance as it increases the
probability for the platelets to adhere to the damaged

endothelium (Yeh and Eckstein, 1994). Platelet con-
centration near the wall can be several times higher
than that at the centre of the flow (Tangelder et al,

1982; Tilles and Eckstein, 1987; Aarts et al, 1988;
Eckstein et al, 1989). The lateral motion of platelets,
leading to this concentration inhomogeneity, is called

margination. Usually, the near-wall concentration peak
is located within or near the cell-free layer (CFL) which
is depleted of RBCs (Yeh and Eckstein, 1994). The
CFL thickness ℓCFL plays an important role in blood

flow, leading to the F̊ahræus and F̊ahræus-Lindqvist
effects (F̊ahræus and Lindqvist, 1931; Lei et al, 2013).

RBCs have a twofold effect on the platelet mo-
tion. First, the presence of RBCs increases the
diffusivity of platelets in blood vessels by or-

ders of magnitude compared with their Brown-
ian diffusivity (Aarts et al, 1983, 1984; Breugel et al,
1992; Turitto and Goldsmith, 1992). Furthermore, non-

diffusive platelet margination towards the vessel
wall increases strongly when RBCs are present
(Turitto and Weiss, 1980; Cadroy and Hanson, 1990;

Joist et al, 1998; Peerschke et al, 2004).

The wall shear stress and the haemat-

ocrit are important parameters for margina-
tion (Turitto and Baumgartner, 1975, 1979;
Turitto and Goldsmith, 1992; Zhao et al, 2007;

Fogelson and Guy, 2008; Reasor Jr et al, 2013). It is
known that margination is only significant when the
wall shear rate is above 200s−1 (Tilles and Eckstein,

1987; Eckstein et al, 1988; Bilsker et al, 1989). There
also seems to be a minimum haematocrit of 10% below
which no margination occurs for physiological stresses

(Tilles and Eckstein, 1987; Waters and Eckstein,
1990). Margination becomes more important with
increasing haematocrit (Yeh and Eckstein, 1994). Also

platelet size and shape play a role for the margination
efficiency (Eckstein et al, 1988; Thompson et al, 2013;
Reasor Jr et al, 2013; Müller et al, 2014).

Only in recent years, resolved computer simula-
tions became available to study the mechanisms of

platelet margination directly, without assuming effec-
tive platelet transport models. Simulations are able to
provide microscopic details (such as stresses, cell ve-

locities and deformations) that are difficult to mea-

sure in experiments. As already assumed in the

1970s by Goldsmith (1971) and Turitto et al (1972),
it is nowadays generally accepted that the dynam-
ics of RBCs and their hydrodynamic interactions with

platelets under the influence of shear are responsible
for margination, rather than a volume exclusion effect
(Crowl and Fogelson, 2010). Zhao and Shaqfeh (2011)

found that the lateral platelet motion in the RBC-rich
region is diffusive and caused by shear-induced fluid ve-
locity fluctuations. According to Kumar and Graham

(2012b), platelet margination, at least in the dilute
regime, is caused by heterogeneous collisions of platelets
and RBCs. If the RBCs are sufficiently soft, these

collisions lead to directed events which are neces-
sary to explain margination (Eckstein and Belgacem,
1991). It can be concluded that the dynamical state of

RBCs (tank-treading versus tumbling or sliding) plays
a major role in platelet margination, as already sug-
gested by Yeh and Eckstein (1994). Recent review arti-

cles provide more details (Kumar and Graham, 2012a;
Fogelson and Neeves, 2015).

In general, platelet margination is still not well un-
derstood. This research aims at investigating in more

detail the effect of tube diameter and capillary num-
ber on margination. Three-dimensional computer sim-
ulations employing the lattice-Boltzmann, immersed

boundary and finite element methods (section 2) are
performed to investigate platelet trajectories in an en-
vironment of deformable RBCs. Section 3 presents the

relevant parameter space and the system setup. The re-
sults about platelet margination and platelet dynamics
in the CFL are presented and discussed in section 4.

Finally, section 5 contains the conclusions.

2 Physical model and numerical methods

There are several recent publications by differ-
ent research groups simulating cellular blood flow,
e.g. Dupin et al (2007); MacMeccan et al (2009);

Doddi and Bagchi (2009); Fedosov et al (2011);
Zhao and Shaqfeh (2011); Freund (2014); Fedosov et al
(2014a). Details and benchmark tests concerning the

present model are reported elsewhere (Krüger, 2011;
Krüger et al, 2011, 2013, 2014). The lattice-Boltzmann
method (section 2.1) is used as Navier-Stokes solver,

and the immersed boundary method (section 2.2)
couples the fluid and structure dynamics. For the
membranes of the red blood cells, a finite element

approach (section 2.3) is employed. Section 2.4 contains
an outline of the numerical implementation of the
viscosity contrast. Tab. 1 provides an overview of all

relevant symbols and parameters.
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(a) (b) (c)

Fig. 1 Mesh generation for a red blood cell. The 20 face ele-
ments of an icosahedron (a) are subdivided, and the resulting
new vertices shifted to the circumsphere (b). The mesh of a
red blood cell (c) can be obtained by adjusting the vertex po-
sitions in space. The meshes in (b) and (c) have 2880 elements
each.

2.1 Lattice-Boltzmann method

The standard lattice-Boltzmann method with D3Q19
lattice (Qian et al, 1992) and BGK collision operator
(Bhatnagar et al, 1954) is employed to solve the Navier-

Stokes equations (Succi, 2001; Aidun and Clausen,
2010).

The BGK operator is parametrised by a relaxation

time τ∆ t (with ∆ t being the time step). The kinematic
fluid viscosity is directly related to τ according to

ν =
1
3

(
τ − 1

2

)
∆x2

∆ t
(1)

where ∆x is the lattice resolution.

External forces, such as those from the immersed
boundary method (section 2.2), are coupled through
the forcing scheme by Shan and Chen (Shan and Chen,
1993).

2.2 Immersed boundary method

The immersed boundary method (IBM) (Peskin, 1972,
2002) couples the fluid flow on the Eulerian lattice and

the off-lattice membrane interface dynamics. IBM has
often been employed for the simulation of elastic de-
formable objects, e.g. by Eggleton and Popel (1998);

Zhang et al (2007); Sui et al (2008); Fogelson and Guy
(2008); Doddi and Bagchi (2009).

Fluid velocities are interpolated at the locations
of the membrane vertices, and membrane forces (sec-

tion 2.3) are distributed back to the lattice. For this
purpose, a short-range tri-linear interpolation stencil is
used that requires only 23 lattice points in three dimen-

sions (Peskin, 2002).

Fig. 2 Indicator field I(x) for distinguishing between inte-
rior and exterior fluid sites. A two-dimensional cross-section
of a three-dimensional RBC suspension in a tube is shown.
Red lines denote the Lagrangian membranes. The grey-scale
lattice-like portion of the figure reflects I(x) on the same cross-
section. Black denotes the interior, white the exterior.

2.3 Red blood cell mesh and elasticity model

In their undeformed state, RBCs are biconcave discs
with a diameter of about 8µm. RBC membranes

are characterised by two major elastic contributions:
in-plane shear and bending resistance (Skalak et al,
1973; Evans, 1974). Furthermore, local and global area

changes are small (typically below 1%) since the lipid
bilayer is incompressible. The total RBC surface A(0)

is therefore essentially constant. Under physiological

conditions, the RBC volume, V (0), is also constant
(Evans and Fung, 1972). The strong deformability of
RBCs is facilitated by the large area excess (addi-

tional area compared to a sphere with the same vol-
ume) which is about 35%. This way, RBCs can squeeze
through capillaries with diameters as small as 4µm
without violating the surface and volume constraints
(Skalak and Branemark, 1969).

In the present work, RBCs and platelets are
treated as closed membranes discretised by Nf flat
faces (area elements). Each element consists of three

nodes (vertices) of which there are in total Nn = (Nf+
4)/2. The generation of the RBC mesh, depicted in
Fig. 1, is based on the icosahedron-refinement proce-

dure (Ramanujan and Pozrikidis, 1998; Krüger, 2011).
In the present work, each RBC mesh consists of 2880
elements and 1442 vertices. Platelets are assumed to be

non-activated and modelled as nearly rigid (i.e. with
finite but large elastic moduli and negligible deforma-
tions for the current purpose), oblate ellipsoids with

an aspect ratio 0.28 and major radius of 1.8µm. Each
platelet mesh comprises 320 faces and 162 vertices.

The RBC membrane is modelled as a hyperelas-
tic continuum with four elastic energy contributions as
outlined below. The model neglects membrane viscos-

ity and assumes that undeformed RBCs are stress-free.
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The RBC equilibrium shape is imposed through the in-

put geometry in Fig. 1(c).

Skalak’s constitutive law for the in-plane en-

ergy density is employed in the present simulations
(Skalak et al, 1973):

ES =
∫

dA
(κS

12
(
I2
1 +2I1 −2I2

)
+

κα
12

I2
2

)
. (2)

The two parameters κS and κα control the strength
of the membrane response to local shear deforma-

tion and dilation, respectively. For healthy RBCs,
the values are κS = 5.3µNm−1 and κα = 0.5Nm−1

(Gompper and Schick, 2008). The two strain invari-
ants I1 and I2 describe the in-plane deformation and
represent the local shear deformation and area dila-

tion, respectively. Eq. (2) is discretised on the mem-
brane mesh according to Charrier et al (1989) and
Shrivastava and Tang (1993). More details are provided

by Krüger et al (2011).

For the bending energy, the ad-hoc form

EB =

√
3κB

2 ∑
⟨i, j⟩

(
θi j −θ (0)

i j

)2
, (3)

similar to that in Fedosov et al (2014b), is used. Here,
κB is the bending resistance (2 ·10−19Nm for an RBC),

θi j is the angle between the normal vectors n̂i and n̂ j of

two neighbouring elements, and θ (0)
i j is the correspond-

ing equilibrium angle of the undeformed membrane.

The sum runs over all pairs of neighbouring elements.

In order to maintain a nearly constant RBC surface

area and following Evans and Skalak (1980) and Seifert
(1997), an additional energy is introduced:

EA =
κA

2

(
A−A(0)

)2

A(0) . (4)

Here, A and A(0) are the current and reference RBC sur-
face areas. For a healthy RBC one finds A(0) ≈ 140µm2.

While A(0) is used as input parameter, A is computed at
every time step by summing all surface element areas.
The magnitude of the surface energy is controlled by

the surface stretching modulus κA that reflects the in-

compressibility of the lipid bilayer. A similar approach
is used for the RBC volume (Seifert, 1997):

EV =
κV

2

(
V −V (0)

)2

V (0) (5)

with V and V (0) ≈ 100µm3 being the current and refer-

ence RBC volumes.

The total membrane energy E is the sum of all con-

tributions ES, EB, EA and EV. The principle of vir-
tual work allows to compute the forces acting on mem-
brane vertices at position r j from the energy functional

E({r j}):

F j =−
∂E({r j})

∂r j
. (6)

The differentiation is performed analytically, and the

resulting forces are implemented in the code. A detailed
derivation of all force contributions is given by Krüger

(2011).
To avoid particle overlap during the simulation, a

short-range repulsion force acts between pairs of neigh-

bouring mesh nodes that belong to different RBCs or
platelets. This force is the same as in Gross et al (2014);
it vanishes for distances larger than ∆x and increases
for smaller node-node distances. A test simulation with

higher resolution (rRBC = 16∆x rather than 12∆x) gave
the same radial haematocrit distribution. Therefore, the

repulsion force does not seem to play an important role
at the chosen resolution and haematocrit value.

2.4 Viscosity contrast

In order to implement a viscosity contrast Λ , i.e. dif-
ferent viscosities inside and outside of the RBCs, each

lattice site requires up-to-date information about its lo-
cation relative to nearby Lagrangian vertices. A signed
distance field as detailed by Frijters et al (2015) is used
to construct an indicator field I(x) at each lattice site x,
denoting the relative location of each site with respect

to nearby RBCs and platelets (I = 0 outside and I = 1
inside particles with a linear slope across the particle
surface). The instantaneous kinematic viscosity is then

ν(x) = νout (1− I(x))+νinI(x) (7)

where νout and νin are the external and internal vis-

cosities, respectively, and

Λ =
νin

νout
(8)

is the viscosity contrast. Fig. 2 shows the indicator field
for a given RBC configuration.

3 System parameters and simulation setup

After introducing the relevant system parameters in

section 3.1, the choice of simulation parameters is
briefly described in section 3.2. The initialisation of the
simulations (section 3.3) deserves some additional at-

tention.
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3.1 Physical parameters

The present research concerns with blood flow in

straight tubes, which involves a series of parameters
and related symbols as collected in Tab. 1.

A pressure gradient p′, mimicked by a constant and
homogeneous force density f = p′, drives the flow along
the tube axis in positive x-direction. In the absence of

particles, this would lead to a parabolic velocity profile
with peak velocity û0 = p′D2/(16ηex), average velocity
ū0 = û0/2 and wall shear rate γ̇w = 4û0/D.

The deformation of an RBC with radius rRBC and

shear elasticity κS in a simple viscous shear flow with

viscosity η and shear rate γ̇ is characterised by the cap-
illary number Ca = ηγ̇rRBC/κS. In a Poiseuille flow, the

shear rate is not constant, but it is common to denote
the shear rate magnitude by the wall shear rate γ̇w. Ac-
cordingly, the “wall capillary number” in tube flow is
defined by

Ca =
ηexγ̇wrRBC

κS
=

p′DrRBC

4κS
. (9)

The second equality can be confirmed by replacing γ̇w
and û0 by the expressions given above. Note that no
RBC in the tube is actually experiencing the wall shear

rate because all RBCs are located farther inside where
the shear rates are lower. However, γ̇w is still a good
indicator of the typical shear rates close to the vessel
wall.

Table 1 Overview of used parameters and symbols.

Parameter symbol value

Tube radius, diameter R, D variable
Tube segment length L 48µm
RBC radius rRBC 4µm
Platelet radius rpl 1.8µm
Platelet thickness hpl 1µm
Tube haematocrit Htt ≈ 37%
RBC count NRBC variable
Platelet count Npl Npl = NRBC/2
Fluid density ρ 1000kgm−3

Cytoplasm viscosity ηin 5mPas
Plasma viscosity ηex 1mPas
viscosity contrast Λ 5
RBC shear elasticity κS 5.3µNm−1

RBC bending rigidity κB 2 ·10−19Nm
Reduced bending modulus κB/(κSr2) 1/424
Pressure gradient p′ variable
Capillary number Ca variable
Lattice resolution ∆x 0.33µm
Time step ∆ t variable
Centre velocity (no cells) û0 0.05∆x/∆ t
Average velocity (no cells) ū0 û0/2
Wall shear rate γ̇w 4û0/D
Number of time steps Nt 2 ·105

Advection time tad 960∆ t

Under physiological conditions (ηex, κS and rRBC

as reported in Tab. 1), Ca = 1 corresponds to γ̇w ≈
1300s−1, which leads to significant RBC deformations.
Note that the definition of Ca in Poiseuille flow is not

unique and that there may be a constant conversion
factor between the present and other authors’ choice.

The purpose of this article is to investigate the effect
of tube diameter D and capillary number Ca on the
platelet dynamics in tube flow at physiological blood

parameters. Tab. 2 lists the investigated values for D
and Ca. The tube haematocrit is Htt ≈ 37% in all cases.

In order to find a dimensionless time for the advec-
tion of the suspension, one may define the advection

time scale

tad =
2rRBC

ū0
. (10)

It is the average time an RBC requires to move its own

diameter in the unperturbed flow.

3.2 Simulation parameters

The flow is periodic along the tube axis (x-direction).
The circular tube cross-section is approximated by a

Table 2 Overview of numerical simulation parameters. [s.u.]
denotes “simulation units”. Symbols are explained in Tab. 1.
Other simulation parameters that are the same throughout
are νin = 5/6, νext = 1/6, Htt ≈ 37%, κα = 0.5, κA = κV = 1 and
Nt = 2 ·105.

D Ca Npl p′ κS κB

[µm] [s.u.] [s.u.] [s.u.]

10

0.1

7 1.48 ·10−4

0.133 0.0453
0.2 0.0666 0.0226
0.3 0.0444 0.0151
0.6 0.0222 0.00755
1.0 0.00453 0.00453
2.0 0.00666 0.00226

15

0.1

16 6.58 ·10−5

0.0888 0.0302
0.2 0.0444 0.0151
0.3 0.0296 0.0101
0.6 0.0148 0.00503
1.0 0.00888 0.00302
2.0 0.00444 0.00151

20

0.1

28 3.70 ·10−5

0.0666 0.0226
0.2 0.0333 0.0113
0.3 0.0222 0.00755
0.6 0.0111 0.00377
1.0 0.00666 0.00226
2.0 0.00333 0.00113

30

0.1

63 1.65 ·10−5

0.0444 0.0151
0.2 0.0222 0.00755
0.3 0.0148 0.00503
0.6 0.00741 0.00252
1.0 0.00444 0.00151
2.0 0.00222 0.000755
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(a) D = 10µm, Ca= 0.1 (b) D = 10µm, Ca= 2.0

(c) D = 15µm, Ca= 0.1 (d) D = 15µm, Ca= 2.0

(e) D = 20µm, Ca= 0.1 (f) D = 20µm, Ca= 2.0

(g) D = 30µm, Ca= 0.1 (h) D = 30µm, Ca= 2.0

Fig. 3 Configuration of the red blood cells (red) and platelets (yellow) for all investigated tube diameters (D = 10, 15, 20,
30µm) and the smallest and largest studied capillary numbers (Ca = 0.1, 2.0) at Htt ≈ 37% after t = 208 tad. The left columns
show sections along the tube, the right columns tube cross-sections with reduced RBC opacity to reveal all platelets. Flow is
from left to right (left columns) and out of the image plane (right columns).

staircase, and the half-way bounce-back boundary con-

dition is used to enfore no-slip at the wall (Ladd, 1994).
Due to the large tube diameters and the choice of the
external viscosity, artificial numerical slip is negligible.

The lattice resolution is ∆x = 0.33µm, i.e. the RBC
diameter is 2rRBC = 8µm= 24∆x. While the tube diam-
eter D varies, the length of the simulated tube segment

is L = 12rRBC = 144∆x in all simulations.

Obeying Λ = 5, the viscosities are νex = 1/6 and
νin = 5/6 in simulation units. This leads to BGK re-

laxation parameters τex = 1 and τin = 3, according to

Eq. (1).

The flow is driven by a constant force density f = p′

along the tube axis. Its value is chosen in such a way

that the centre velocity û0 would be 0.05∆x/∆ t in the
absence of any particles. This is to avoid compressibility

effects and to keep the time step sufficiently small to
achieve stable simulations. Note that the actual centre
velocity is smaller (typically by a factor of ≈ 2) due to

the presence of the cells.

Tab. 2 lists all relevant parameter values for the sim-

ulations undertaken.

3.3 Simulation initialisation

Due to the relatively small system size (between
NRBC = 14 and 126), the number of platelets is Npl =

NRBC/2. This is about 7–8 times larger than observed
under physiological conditions. Since platelets are much
smaller than RBCs, their volume fraction is still small

compared to Htt.
At the beginning of a simulation, platelets and

RBCs are distributed throughout the tube with ran-

dom positions and orientations. Any overlap of parti-
cles with particles and particles with the tube wall is
avoided. The platelets are positioned first, which as-
sures a more homogeneous distribution of them across

the tube cross-section. In order to facilitate this proce-
dure, all particles are initially shrunk to half of their lin-
ear size and grown afterwards within 4000 time steps.

During growth, the particle volume increases with a
constant rate and a repulsion force avoids overlap.

The growth process leads to an increase of kinetic

energy in the system since there is no fluid dynamics
during the growth that could dissipate energy. How-
ever, an increase of the kinetic energy would lead to

fast motion of the mesh nodes and instability eventu-
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ally. A friction force is therefore used to dissipate en-

ergy. This force is switched off once the growth process
is complete. The exact form of the dissipation force is
not significant for this purpose.

After all particles have reached their full size, the

simulation starts with a constant fluid density ρ (unity
in simulation units) and zero velocity everywhere. The

force density f = p′ along the tube is switched on in-
stantaneously to drive the flow. Each simulation runs
for Nt = 2 ·105 time steps, i.e. about 208 tad.

4 Simulation results and discussion

The results and discussion are presented in three parts.
In section 4.1, the final suspension state is inspected and

characterised, and the cell-free layer thickness is inves-
tigated. Section 4.2 contains the margination observa-
tions and analysis. Platelet dynamics near the tube wall

is discussed in section 4.3.

4.1 RBC dynamics and cell-free layer thickness

Fig. 3 shows the final state (after 208 advection times)

for the smallest and largest simulated capillary num-
ber Ca and each tube diameter D. Both the RBC and
platelet configurations depend on the geometry and

flow parameters.

At Ca = 0.1, RBCs are only weakly deformed, and
their dimples are easy to spot. Contrarily, at Ca = 2.0,
RBCs show a strong and characteristic elongation, and
the dimples have disappeared. The CFL is particulary
pronounced at higher Ca, and RBCs close to the tube

wall tend to align with the wall and form a ring. This
leads to a slight increase in the local RBC concentra-
tion (Fig. 6(a)) as observed previously (Lei et al, 2013).

Furthermore, RBCs in Fig. 3(b) show a typical zigzag
configuration that can be found in small blood vessels
(McWhirter et al, 2009).

To characterise the deformation of the RBCs, Fig. 4

depicts the average Taylor deformation parameter DT =
(a− b)/(a+ b) of all RBCs in the tube. Here, a and
b are the two largest semiaxes of the inertia ellipsoid

(Krüger et al, 2011), defining the major RBC plane.
For an undeformed RBC, a = b = rRBC and therefore
DT = 0. Fig. 4 reveals that DT is strictly increasing with

Ca, as expected. The RBC deformation is mostly de-
fined by the ambient viscous stresses and therefore Ca.
This is nicely recovered by the collapse of the curves for

D ≥ 15µm. For D = 10µm, however, nearly all RBCs
assume a slipper- or parachute-like shape; the Taylor
deformation parameter is not a reliabe deformation in-

dicator then.

0.1 0.2 0.3 0.6 1.0 2.0
0

0.1

0.2

0.3

Ca
D

T

D = 10µm

D = 15µm

D = 20µm

D = 30µm

Fig. 4 Average RBC deformation (see main text for the def-
inition of the Taylor deformation parameter DT) as function
of capillary number Ca for all investigated tube diameters.
Data is time-averaged after the first quarter of the simula-
tion (i.e. between ≈ 50 and 200 advection times). Lines are
guides for the eyes.

The rotational state of a flowing RBC is an im-
portant observable. For example, we know that RBCs
tumble or tank-tread (or perform a more complicated

dynamical mode) in simple shear flow. A suitable quan-
tity for describing the rotational activity of an RBC is
its average angular velocity ω; it can be obtained by
suitably averaging the tangential velocity of all surface

elements about the geometrical centre (Krüger et al,
2013). Both tank-treading and tumbling lead to a fi-

nite value of ω. The difference is that tank-treading
leaves the RBC orientation fixed, while tumbling is a

rigid-body rotation. These two modes can be distin-
guished by investigating the change of the orientation of
the RBC’s inertia ellipsoid (Krüger et al, 2013). Fig. 5
shows the normalised rotational activity ω/γ̇w of the
RBCs as function of radial position of their centre of
mass. Interestingly, the RBCs close to the wall tend to

slide for Ca = 0.1 (nearly no rotational activity) and
to tank-tread for Ca ≥ 0.2 (strong rotational activity).
There is no significant change in the rotational activity

between Ca = 0.3 and Ca = 2.0. I did not observe tum-
bling for those near-wall RBCs; they do not exhibit an
appreciable change of their orientation over time (data

not shown). This has also been confirmed by visually
inspecting the RBC configuration as function of time.
The strong wall confinement of those RBCs is probably

the reason for them sliding rather than tumbling.

The platelet distribution changes strongly with D
and Ca, as discussed in more detail in section 4.2. In

summary, platelets prefer to marginate towards the
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Fig. 5 Average angular velocity ω of the RBCs as function of radial Fig05a of their centre of mass for all investigated tube
diameters and selected capillary numbers. Data is time-averaged after the first quarter of the simulation (i.e. between ≈ 50 and
200 advection times), and angular velocities are normalised by γ̇w. The magnitude of the temporal fluctuations is comparably
to the average. Lines are guides for the eyes.

tube wall with increasing Ca. Also, for smaller D, a
larger fraction of platelets resides near the tube wall at

the end of the simulations.

There is no unique way to define the CFL thick-
ness ℓCFL since the edge between the outermost RBCs
and the plasma layer is diffuse (Lei et al, 2013). The
blurring of the CFL is clearly visible in Fig. 3. In the

following, the definition of ℓCFL is based on the radial
tube haematocrit profile Htt(r) averaged over time. As
shown in Fig. 6(a), Htt(r) decreases strongly near the

wall. The CFL thickness is defined by the distance from
the tube wall where Htt(r) reaches Htt/2.

Fig. 6(b) shows the resulting CFL thickness as func-
tion of Ca for different tube diameters D. ℓCFL is

generally increasing with Ca until it saturates above
Ca ≈ 0.3–0.6. This is close to the point where RBC
tank-treading replaces tumbling in simple shear flow

(Krüger et al, 2013). According to the findings pre-
sented earlier in this section, the RBCs next to the
tube wall are sliding rather than tumbling at Ca < 0.2.
The slight decrease of ℓCFL at Ca = 2 is caused by
a subtle geometrical rearrangement of the RBCs due
to their large deformations. Evidently, the CFL thick-

ness is larger for wider tubes, but the relative thick-

ness ℓCFL/D is decreasing. In the macroscopic limit,
for D > 100µm, the CFL is less important for the

effective blood rheology (Lei et al, 2013). Compared
to Katanov et al (2015), the CFL thickness values re-
ported here are smaller. This difference is probably

caused by varying CFL definitions and different vis-
cosity contrast values; while Katanov et al (2015) used
Λ = 1, it is Λ = 5 in the present work. According to

Katanov et al (2015), a smaller value of Λ results in a
larger CFL thickness.

In the following, I use ℓCFL to identify those

platelets that are located between the RBC-rich region
and the tube wall.

4.2 Platelet margination

Fig. 7 depicts some example radial platelet positions as
function of time. In the following, a platelet is consid-
ered being fully marginated when it is located in the

CFL vicinity with its radial centre position between
R− 2ℓCFL and R (indicated by dotted lines in Fig. 7).
As seen in Fig. 6(a), this corresponds to the region be-

tween the tube wall and the haematocrit peak at the
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(a) Radial haematocrit distribution (D = 30µm, Ca = 2.0)
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(b) CFL thickness

Fig. 6 Cell-free layer thickness ℓCFL. (a) Exemplary radial tube haematocrit profile Htt(r) averaged over time. The CFL
thickness ℓCFL (denoted by grey area) is defined as the distance from the wall (r = R) to the point where Htt(r) reaches half of
the average tube haematocrit. (b) ℓCFL as function of capillary number Ca for all investigated tube diameters D at Htt ≈ 37%.
Error bars are estimates. Lines are guides for the eye. Note that the Ca-axis is logarithmic.

CFL edge. In this region, Htt(r) is a strongly decreasing
function.

The character of the platelet motion depends on
the tube diameter D and the capillary number Ca.
Zhao and Shaqfeh (2011) demonstrated previously that

platelets show diffusive behaviour in the RBC-rich re-
gion until they reach the CFL where they get trapped
irreversibly. However, the present data shows that this

is only the case for larger capillary numbers (Ca > 0.2).
Fig. 7 reveals that, for Ca = 0.1, several platelets leave
the CFL vicinity again. Those platelets do not move far

away from the CFL, though; instead they tend to be-
come caught again shortly after. For larger Ca, platelets
are trapped in the CFL once they visit it for the first

time.

Since it is difficult to extract further information

directly from the trajectories in Fig. 7, Fig. 8 shows the
time evolution of the average radial platelet position
and the fraction of platelets that are located within

2ℓCFL from the tube wall. The first observation is that
the time for platelets to become trapped increases with
tube diameter. In larger tubes, platelets have to move

for a longer distance to reach the CFL; this takes more
time. From the third and fourth rows in Fig. 8 one can
conclude that margination is still ongoing for D≥ 20µm
at the end of the simulation (after 208 advection times).
On the contrary, the platelet distributions in the smaller
tubes with D ≤ 15µm seem to have reached a quasi-

equilibrium.

Secondly, margination and trapping are faster for
higher capillary number. However, there is no strong

difference between Ca = 0.3 and Ca = 2.0 as the second
and third columns in Fig. 8 show. Zhao and Shaqfeh
(2011) observed that the platelet diffusion in the RBC-

rich region does not change significantly between Ca =
1.0 and Ca = 2.0, a fact that is attributed to the satu-
ration of RBC deformation due to the conservation of

the RBC surface area. Also Müller et al (2014) reported
that the shear-rate dependence of particle margination
is most prominent for small shear rates. The strong in-
crease of the margination efficiency between Ca = 0.1
and Ca = 0.3 in Fig. 8 could be related to the dynami-
cal state of the RBCs. As discussed earlier, RBCs close
to the wall slide below and tank-tread above Ca ≈ 0.2.
Reasor Jr et al (2013) hypothesised that tank-treading
RBCs may increase the margination efficiency. In fact,
for Ca= 0.1 (first column in Fig. 8), margination within

the first 208 advection times is nearly absent, except for
the smallest tube with D = 10µm.

The smallest tube (D = 10µm) plays a special role.
Platelets tend to reach the CFL nearly instantaneously,
even at Ca = 0.1. Therefore, margination in small ves-

sels with D ≤ 10µm seems to be very effective for all
capillary numbers. This is in line with the observations
by Reasor Jr et al (2013) who reported that, for rigid

RBCs, margination only occurs for platelets that are
not farther away from the wall than about 5µm. There-
fore, all platelets in a 10µm-tube are always in wall

vicinity. This will be further discussed below. Already
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(g) D = 30µm, Ca = 0.1
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Fig. 7 Platelet margination for different tube diameters (D = 10µm with 7 platelets, D = 15µm with 16 platelets, D = 20µm
with 28 platelets and D = 30µm with 63 platelets). The radial position r (normalised by tube radius R) for each platelet is
shown for two different capillary numbers (Ca = 0.1 and 2.0) as function of dimensionless time. The dashed line denotes the
cell-free layer thickness with distance ℓCFL from the wall. The dotted line denotes twice the CFL thickness, 2ℓCFL. Note that
platelets are randomly distributed over the pipe cross-section at the start of the simulation. This means that more platelets
are initially located at larger radii r since the cross-section area element obeys dA = 2πrdr.
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(a) D = 10µm, Ca = 0.1 (b) D = 10µm, Ca = 0.3 (c) D = 10µm, Ca = 2.0

(d) D = 15µm, Ca = 0.1 (e) D = 15µm, Ca = 0.3 (f) D = 15µm, Ca = 2.0

(g) D = 20µm, Ca = 0.1 (h) D = 20µm, Ca = 0.3 (i) D = 20µm, Ca = 2.0

(j) D = 30µm, Ca = 0.1 (k) D = 30µm, Ca = 0.3 (l) D = 30µm, Ca = 2.0

Fig. 8 Average platelet margination for all studied tube diameters D (varied row-wise) and a few capillary numbers (Ca = 0.1,
0.3, 2.0, varied column-wise). Dashed lines show the radial position ⟨r⟩ averaged over all platelets as function of time. The grey
regions bounded by solid lines indicate the number fraction ⟨n⟩ of all platelets that are located within a region 2ℓCFL from the
tube wall (indicated by horizontal dotted lines).
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Fig. 9 Radial distribution of relative platelet concentration cref for different tube diameters D (varying row-wise) and capillary
numbers Ca (varying column-wise). The platelet distributions are normalised by the cross-sectional area of each bin such that
a homogeneous distribution would lead to a constant line at crel = 1 (denoted by horizontal dashed line). The bin size is 0.5µm.
Data is obtained from platelet centres and averaged between 3Nt/4 and Nt . The cell-free layer thickness is shown as vertical
dotted line.
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(a) radial average velocity (D = 20µm) (b) radial velocity fluctuation (D = 20µm)

(c) radial average velocity (D = 30µm) (d) radial velocity fluctuation (D = 30µm)

Fig. 10 (a,c) Average radial platelet velocity ⟨vr⟩ and (b,d) its standard deviation σvr as function of radial position r. Data is
shown for (a,b) D = 20µm and (c,d) D = 30µm. Data is time-averaged after the first quarter of the simulation (i.e. between ≈ 50
and 200 advection times), and velocities are normalised by rRBCγ̇w. The grey-shaded area denotes the CFL vicinity (2ℓCFL).
Lines are guides for the eyes.

for a slightly larger tube (D = 15µm), several platelets

remain in the RBC-rich region for an extended period
of time if the RBCs are sufficiently rigid (Ca = 0.1). For
tubes with D = 20µm and 30µm, only a fraction of the

platelets initially located in the RBC-rich phase diffuse
into the CFL during the simulation time. These obser-
vations are in line with Müller et al (2014) reporting an

increased margination efficiency in smaller vessels.

As a final remark regarding Fig. 8, the number ra-

tio of platelets near the tube wall fluctuates more for
smaller Ca. This supports the observation that platelets
are not irreversibly trapped in the CFL for Ca = 0.1.
Further data substantiating this claim will be discussed
shortly.

Fig. 9 shows some radial platelet distributions aver-

aged over the final 25% of the simulation time (between
≈ 150 and 200 advection times). These data support
the previous interpretations. For D = 10µm (first row),

margination is very effective, and nearly all platelets are
located close to the CFL (vertical dotted line). The situ-
ation is different for larger tube diameters with Ca= 0.1
(left column). In those cases, there is nearly no margina-

tion, and the platelet distribution is close to being ho-

mogeneous (horizontal dashed line). For Ca = 0.3 and
Ca = 2.0 (second and third columns in Fig. 9), platelets
are effectively transported towards the tube wall.

In Fig. 9(h,i,k,l), a dip in the platelet concentra-

tion close to the CFL edge is visible. This suggests
that platelets are effectively transported in outward di-
rection when they are close to the CFL edge, there-

fore decreasing the concentration at r ≈ R−2ℓCFL and
increasing it within the CFL. Platelet diffusion leads
to a fresh supply of platelets moving from the RBC-

rich region towards the wall until there are no platelets
left in the tube interior. Further evidence supporting
this interpretation will be discussed below. As men-

tioned before, this process seems to have completed in
Fig. 9(e,f), where the tube radius is relatively small
(D= 15µm). Yet, the process appears to be still ongoing

in Fig. 9(h,i,k,l), where the tube is larger. In the latter
cases, I expect that all platelets will eventually reach
the CFL after a sufficiently long time, but much longer

simulations are necessary to decide whether margina-
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tion for small Ca is just slow or whether this is already

the equilibrium state.

As a remark, there is also a platelet concentration
peak near the centreline in Fig. 9(i,k). Note that the ab-

solute number of platelets in that region is small since
the bin area decreases linearly with r for r → 0. There-
fore, the platelet concentration peak near the CFL edge

is caused by many more platelets and is therefore more
significant than the peak near r = 0. This is nicely borne
out in Fig. 3(f) where only three platelets are located

near the centreline, but the remaining 25 are close to
the CFL. Therefore, the central peak is probably a sta-
tistical fluctuation due to the relatively short averaging

period and limited platelet number.

To investigate the radial platelet transport in more

detail, Fig. 10 shows the average radial platelet velocity
⟨vr⟩ and its standard deviation σvr as function of radial
position r for D = 20µm and D = 30µm. Due to the
small number of platelets and the fast margination, the

radial velocity data for D = 10µm and D = 15µm is too
noisy to provide useful information.

The first striking observation from Fig. 10 is that the
radial platelet velocity is close to zero everywhere, ex-
cept near the edge of the CFL (grey area) for Ca > 0.2.
This shows that platelets are pushed towards the wall if
they have reached the edge of the CFL. This effect, how-
ever, only exists when RBCs are sufficiently strongly

deformed and in the tank-treading state. For the pre-
sented tube diameters, collisions between platelets and
nearly rigid RBCs (Ca ≤ 0.2) do not lead to a sig-

nificant lateral platelet transport near the CFL. Note
that the lateral platelet velocity is closely related to
the drift term in effective platelet transport mod-

els (Eckstein and Belgacem, 1991; Yeh and Eckstein,
1994).

As mentioned earlier, Fig. 8 suggests that the sys-
tem has not yet reached a steady state. It is crucial to
understand that this is a necessity to observe non-zero

radial platelet velocities in the first place. In a steady
state, there could not be a radial net flux of platelets
as this would change the radial concentration profile.

Therefore, Fig. 9 and Fig. 10 give important insight
into the dynamics towards the steady state.

The peak of ⟨vr⟩(r) coincides with the peak of Htt(r)
in Fig. 6(a). Therefore, platelets are already pushed out-
wards before they have passed the CFL edge. For both
tube diameters shown in Fig. 10, ⟨vr⟩(r) becomes signif-

icantly larger than zero when the distance to the wall is
about 5µm; this is in good agreement with the results
report by Reasor Jr et al (2013).

Fig. 10(b,d) reveals that the radial platelet velocity
fluctuation strongly decreases within the CFL. This is

an indicator for reduced platelet diffusion in that region.
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Fig. 11 Angular velocity ωr normalised by wall shear rate γ̇w
of two platelets (grey and black) near the wall for D = 20µm
and Ca = 0.6. The dashed line indicates the expected average
Jeffery frequency ω̄J for an unconfined platelet with aspect
ratio 3.6.

One can see that the gradient of σvr at the edge of the
CFL is larger for higher Ca. This suggests that escaping
the CFL becomes increasingly difficult with growing Ca
because it is less likely that a platelet is moving fast
enough towards the tube axis before it is pushed back.
Fig. 10 can therefore explain why more platelets leave
the CFL again in Fig. 7 when Ca is small.

Furthermore, the radial velocity fluctuations in

Fig. 10 in the RBC-rich region increase with Ca. This
may result in a larger platelet diffusivity that further
increases the lateral mobility of platelets when Ca is

large.

Concluding this section, one can say that non-
diffusive platelet margination in tubes with D ≥ 15µm
is only observed when Ca > 0.2. This is in good
agreement with previous experimental results reporting
that margination is only relevant when the wall shear

rate is larger than 200s−1 (Tilles and Eckstein, 1987;
Eckstein et al, 1988; Bilsker et al, 1989). According to
the definition of Ca in Eq. (9), Ca = 0.2 corresponds

to ≈ 250s−1. This threshold value is close to the point
where RBCs near the CFL edge start to tank-tread.
The onset of tank-treading therefore seems to be nec-

essary for margination. The situation is different for
D = 10µm where platelets move to the tube wall very
fast, even at Ca = 0.1. A possible explanation is that

many RBCs in Fig. 3(a) fill the entire cross-section of
the tube so that platelets can easily slide between them
towards the CFL.

4.3 Platelet tumbling and sliding in the cell-free layer

Once platelets are caught in the vicinity of the CFL,
they show two main dynamical states: i) tumbling in
the local shear flow and ii) sliding parallel to the flow

axis (Vahidkhah et al, 2014). The central observable is
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Fig. 12 Normalised tumbling rate Γtumb averaged over all
platelets near the cell-free layer. Error bars indicate ensemble
variances. Lines are guides for the eye. Note that the Ca-axis
is logarithmic and that symbols are slightly shifted along the
Ca-axis to avoid overlap of error bars.

the angular velocity of a platelet in a plane defined by

the tube axis and the radial platelet position: ωr. Fig. 11
shows the time evolution of ωr for two different platelets
in the same simulation near the CFL.

A freely moving platelet with axis aspect ratio p
in a shear flow with shear rate γ̇ would be in a pure
tumbling state leading to Jeffery orbits with average

angular velocity ω̄J (Jeffery, 1922):

γ̇
ω̄J

= p+
1
p
. (11)

In the present case, p= 3.6, and therefore ω̄J = 0.26 γ̇ as
indicated by the dashed line in Fig. 11. Sliding is caused

by confinement due to the presence of the wall on one
side of the platelet and the RBCs on the other. Only
occasionally a platelet has “enough space” to tumble.

As visible in Fig. 11, tumbling events are defined
by localised peaks in ωr, while sliding is accompanied
by low-amplitude fluctuations of ωr with zero average.
Each tumbling event leads to a 180◦- or π-rotation of
the platelet, called a flip. In fact, the time integral of ωr
over one flip turns out to be close to π. A full rotation
would therefore require two flips.

An important parameter is the average relative tum-
bling rate of a platelet in the CFL:

Γtumb =
ω̄r

ω̄J
=

1
ω̄J

∫
f (t)ωr(t)dt∫

f (t)dt
. (12)

To consider only platelets in proximity of the CFL, the
function f (t) is defined as

f (t) =

{
1 r(t)> R−2ℓCFL

0 otherwise
. (13)

Therefore, the integral in the denominator in Eq. (12)

is the total time a platelet spends near the CFL: TCFL.

Fig. 12 shows the tumbling rate Γtumb averaged over
all platelets near the CFL. The most striking observa-

tion is that tumbling is much less frequent than for
a freely moving platelet. The tumbling rate is rather
reduced to 10–25% of the value expected for a free

platelet, indicating that sliding is the most likely dy-
namical state in the CFL for the investigated parame-
ters. Also Müller et al (2014) observed a decreased tum-

bling frequency for ellipsoidal particles trapped in the
CFL. Vahidkhah et al (2014) reported that the slid-
ing probability strongly increases with decreasing CFL

thickness. Below ℓCFL ≈ 4µm, which is the case here,
sliding starts to occur until it eventually becomes the
dominating dynamical mode.

From visual simulation data it follows that platelet
flips are correlated with “overtaking” events of individ-

ual RBCs that move just at the edge of the CFL. On
the one hand, a platelet is dragged along by a passing
RBC. On the other hand, platelets find more space in

the gaps between RBCs once an RBC has passed. This
makes it easier for a platelet to flip, but not all RBC
overtaking events lead to a platelet flip.

Interestingly, Γtumb is rather independent of Ca as
seen in Fig. 12. The tube diameter has a stronger ef-

fect; larger tubes lead to a higher tumbling rate. This
is probably related to an increase of the CFL thickness
with D: the thicker the CFL, the smaller the confine-

ment felt by the platelets. Flipping should therefore be
easier and more frequent with increasing D but other-
wise constant flow parameters (Htt, Ca).

It is worth mentioning that the errors in Fig. 12,
defined by the variance of the ensemble average of all
platelets, are relatively large. The reason is that the to-

tal number of flips observed is small, and platelets show
a wide distribution of number of flips. On average, a
platelet flips less than ten times during one simulation.

5 Conclusions

Tube flow of red blood cells (RBCs) and platelets

was simulated using a combination of the lattice-Boltz-
mann, immersed boundary and finite element methods.
The aim of this work was to study platelet margination

and subsequent platelet dynamics in the cell-free layer
(CFL) for different tube diameters D and RBC cap-
illary numbers Ca. Tubes diameters were D = 10, 15,
20 and 30µm, and the investigated capillary numbers
range from Ca = 0.1, where RBCs are relatively rigid,
to Ca = 2.0, where RBCs are strongly deformed and

elongated. The tube haematocrit is ≈ 37%.
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One main result is that platelet margination is facil-

itated by a non-diffusive radial transport near the CFL
edge when Ca > 0.2. This is in accordance with previ-
ous experimental observations. For smallerCa, however,
margination is less effective, and platelets are not irre-
versibly trapped in the CFL.

The non-diffusive platelet transport presents itself
as a non-zero average platelet velocity in outward di-
rection near the CFL edge. Platelets within the outer-

most 5µm in the tube are affected by this drift. This
explains why platelet margination is very fast for tubes
with D= 10 and 15µm where essentially all platelets are

in wall vicinity. Once a platelet has reached the CFL
edge through diffusive motion, it is transported into
the CFL due to collisions with tank-treading RBCs. At

least for Ca> 0.2, I expect this process to continue until
no platelets remain in the RBC-rich region.

The simulations also show that the radial platelet
velocity fluctuations are strongly suppressed in the
CFL. The difference between these fluctuations within

the RBC-rich region and the CFL increases with Ca,
which explains why platelets are less likely to escape
the CFL with increasing Ca.

Furthermore I demonstrated that the predominant

dynamical state of platelets in the CFL is sliding rather
than tumbling, which is in line with earlier findings.
Due to the relatively small CFL thickness at ≈ 37%
haematocrit, platelets are strongly confined, and tum-
bling events are rare. They occur 4–10 times less fre-
quently as expected for an unconfined platelet. The

tumbling rate is only a weak function of Ca, but grows
with D and therefore the CFL thickness.

The presented results are in accordance with pre-
vious experiments and simulations. As such, this work
sheds more light on the platelet margination mechanism

which is still not well understood. We can see how the
explicit modelling of deformable RBCs is necessary to
observe margination as an emergent effect. I thus ex-

pect this research to stimulate further discussions and
contribute to a development of a predictive continuum
margination theory.
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