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Abstract – The associationist account for early word learning is based on the co-occurrence
between referents and words. Here we introduce a noisy cross-situational learning scenario in which
the referent of the uttered word is eliminated from the context with probability γ, thus modeling
the noise produced by out-of-context words. We examine the performance of a simple associative
learning algorithm and find a critical value of the noise parameter γc above which learning is
impossible. We use finite-size scaling to show that the sharpness of the transition persists across
a region of order τ−1/2 about γc, where τ is the number of learning trials, as well as to obtain the
learning error (scaling function) in the critical region. In addition, we show that the distribution
of durations of periods when the learning error is zero is a power law with exponent −3/2 at the
critical point.

Copyright c© EPLA, 2012

Introduction. – The problem of early word learning
has been subject of philosophical controversy for
centuries [1]. The always visionary Augustine argued that
the child makes the connections between words and their
referents by understanding the referential intentions of
others, thus anticipating the modern theory of mind in
about fifteen centuries [2]. In the 17th century, Locke’s
empiricism supported the associationist viewpoint, which
contends that the mechanism of word learning is sensi-
tivity to covariation, i.e., if two events occur at the same
time, they become associated.
Here we examine a radical offshoot of the associationist

approach to lexicon acquisition termed cross-situational or
observational learning [3], which asserts that the meaning
of a word can be determined by looking for something
in common across all observed uses of that word [4]. In
other words, learning takes place through the statistical
sampling of the contexts in which a word appears.
A scenario to describe the lexicon acquisition process

should take into account the inherent ambiguity of the
learning task (i.e., many distinct objects may be associ-
ated to the same word) as well as the noise effect of out-
of-context words (i.e., the uttered word may not refer to
any object in the context). Whereas the noiseless scenario
has been explored in great detail in the literature [5–7],
where it was shown that the learning error decreases expo-
nentially with the number of learning trials, a systematic
study of the effect of noise is lacking.

To remedy this deficiency, we modify the minimal model
of noiseless cross-situational learning [5–7] so as to include
the effect of noise produced by out-of-context words.
Using Monte Carlo simulations and finite-size scaling
we identify and characterize a critical phenomenon that
separates the asymptotic regime where the lexicon can be
acquired without errors from the regime where learning
is impossible. At the critical noise level, we find that the
duration of the periods with zero error is distributed by a
power-law distribution.

Cross-situational learning scenario. – We assume
that there are N objects, N words and a one-to-one
mapping between words and objects. At each learning
event, C objects are chosen at random without replace-
ment from the fixed list of N objects and one of these
objects is named according to the word-object mapping.
The C objects form the context which determines the
interpretation of the uttered word and the learner’s task is
to guess which of the C objects that word refers to. This is
then an ambiguous word learning scenario in which there
are multiple object candidates for any word. The parame-
ter C is a measure of the ambiguity of the learning task.
In particular, in the case C =N the word-object mapping
is not learnable within a cross-situational scenario.
A learning episode comprises a context and a single

target word. In an uncorrupted learning episode, the
context must exhibit the correct object (i.e., the object
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named by the target word according to the object-
word mapping) plus C − 1 distinct mismatching objects.
Noise is added to the learning scenario by removing the
correct object from the context, which will then exhibit
C mismatching objects. Such corrupted and misguiding
learning episodes occur with probability γ ∈ [0, 1]. This
type of noise is an integrant part of any realistic learning
situation, arising usually from the unwarranted narrowing
of the context by the learner.
To represent the one-to-one object-word mapping we

use the index i= 1, . . . , N to label the distinct objects and
h= 1, . . . , N to label the distinct words. Then, without
lack of generality, the correct mapping is defined by
assigning object i= 1 to word h= 1, object i= 2 to word
h= 2 and so on. The problem faced by the learner is
to determine the correct mapping given a sequence of
learning episodes. Next we will describe a simple (perhaps,
the simplest) procedure to accomplish this learning task.

Associative learning model. – We assume that
learning is a change in the confidence with which the
learner associates the target word h to a given object i
and represent this confidence by a non-negative integer
pih. Our associative accumulator learning procedure is
described as follows. Before learning all confidences are
set to zero, i.e., pih = 0 for i, h= 1, . . . , N , and whenever
object i∗ appears in a context with target word h∗ the
confidence pi∗h∗ increases by one unit [8]. Hence, exactly
C confidence values are updated at each learning trial.
To determine which object corresponds to word h the

learner simply chooses the object index i for which pih is
maximum. In the case of ties, the learner selects one object
at random among those that maximize the confidence.
From the definition of the correct word-object mapping,
our learning algorithm achieves a perfect performance
when phh > pih for all h and i �= h.
A critical feature of the accumulator model is that words

are learned independently. This fact alone allows us to
split the analysis of the vocabulary learning task in two
parts. The first and most important part is the problem
of learning the meaning (or the referent) of a single word.
Once this is done, we can easily solve the problem of
learning the N words given their sampling frequencies [7].
Hence, in this work we will focus on the single-word
learning problem only.

Single-word learning. – Accordingly, we consider the
learning of a single word, say word h, which is then
uttered at all learning trials τ . We define the single-word
learning error ε (τ) for τ > 0 as follows. If phh < pih for
any i �= h then ε= 1, otherwise if phh = pih for n values of
i �= h then ε= n/ (n+1) with n= 0, . . . , N − 1. At τ = 0
all confidences are set to zero and so ε= (N − 1) /N .
In the noiseless case (γ = 0) we have phh � pih for all
i �= h since object i= h is always part of the context.
So errors are due to ties phh = pih, i �= h only. In fact, it
can be shown analytically that in this case the average
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Fig. 1: Learning error vs. the number of learning trials τ for
a single sample of the learning process using the accumulator
learning model. The parameters are N = 20, C = 6 and γ =
γc = 0.7. The lines are guides to the eye.
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Fig. 2: Average learning error 〈ε〉 as function of the number
of learning trials for N = 5, C = 2 and (bottom to top) γ =
0, 0.1, 0.2, . . . , 0.9. The critical value of the noise parameter is
γc = 0.6 at which 〈εc〉= 0.8. The symbols are the simulation
results and the lines are guides to the eyes.

learning error vanishes like [(C − 1) / (N − 1)]τ for large τ
[5–7].
In the case the contexts are corrupted by noise with a

probability γ an analytical approach is not possible and
we have to resort to simulations to study the stochastic
learning process. Figure 1 shows a typical evolution of
the learning error at the critical noise level. Although
this figure reveals a rich stochastic dynamics, it is rather
uninformative from the learning perspective. In that sense,
the behavior of the average learning error 〈ε〉, shown in
fig. 2, is more relevant. For a fixed τ , this average is
calculated using typically 106 to 107 realizations of the
learning process.
Figure 2 reveals that learning is possible provided that

the noise parameter does not exceed a certain threshold γc.
More pointedly, in the asymptotic regime τ →∞ we find
that 〈ε〉→ 0 for γ < γc and that 〈ε〉→ 1 for γ > γc. The
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surprising finding is that at γ = γc, the average learning
error becomes independent of τ � 0.
There is a simple argument to determine γc as well as

the error 〈εc〉. We begin by noting that the borderline
between learning and non-learning occurs when all N
objects are equally likely of being selected to compose
the contexts. In fact, since we assume that learning is
based on the perception of differences in the co-occurrence
of objects and target words, in the case all N objects
have the same probability of being selected to form the
contexts, such a purely observational learning is clearly
unattainable. Hence in this case we have

〈εc〉= ε (τ = 0) = N − 1
N
, (1)

which corresponds to the learning error prior to learning,
as expected. The probability of selecting the correct object
in a learning episode is given by the probability of generat-
ing a noise-free context, i.e., 1− γ, since the correct object
is certain to be chosen in this case. A given confound-
ing object can be selected in two ways. First, in a noise-
free episode with probability (1− γ) [(C − 1) / (N − 1)].
Second, in a noisy episode with probability γ [C/ (N − 1)].
Note that in both ways the correct object is taken out
from the list of eligible objects —in the first because it
was already chosen and in the second because it cannot
be chosen. Accordingly, γc is determined by equating the
probability of selecting the correct object with the proba-
bility of selecting any given confounding object to compose
the context in a learning episode,

1− γc = (1− γc) C − 1
N − 1 + γc

C

N − 1 , (2)

from which we get

γc = 1− C
N
. (3)

These expressions for 〈εc〉 and γc proved correct for a vast
selection of values ofN and C. In addition, we can perform
a simple consistency check on these expressions as follows.
The average learning error at the first trial is given by

〈ε (τ = 1)〉= (1− γ) C − 1
C
+ γ (4)

and by setting γ = γc we recover eq. (1) as it should be
since 〈εc〉 is independent of τ (see fig. 2).
Analytical solution for N = 2. – For N = 2 (and so

C = 1), the average learning error at an even number of
trials τ is simply

〈ε〉= 1
2

(
τ
τ/2

)
(1− γ)τ/2 γτ/2+

τ/2−1∑
n=0

(
τ
n

)
(1− γ)n γτ−n,

(5)
where the first term corresponds to the case that both
objects appear τ/2 times and the second term to the

case that the confounder appears more frequently than
the correct object. (If the number of trial τ is odd, then
the first term of eq. (5) must be discarded.) For τ � 1 we
find

〈ε〉 ∼
(
1

2πτ

)1/2
[4γ (1− γ)]τ/2

−1
2
erfc

[
τ1/2
(
1− γ
2γ

)1/2]

+
1

2
erfc

[
τ1/2 (1/2− γ)
[2γ (1− γ)]1/2

]
, (6)

where erfc is the complementary error function. The
outcome of the limit τ →∞ is determined by the last term
of this expression, which goes to 0 (and so 〈ε〉→ 0) for
γ < 1/2 and to 1 (and so 〈ε〉→ 1) for γ > 1/2, which proves
that γc = 1/2 in this case. We note that setting γ = 1/2 in
eq. (5) and using the identity

2

τ/2−1∑
n=0

(
τ
n

)
+

(
τ
τ/2

)
= 2τ (7)

yields 〈εc〉= 1/2 regardless of the value of τ .
The behavior of the average learning error in the vicinity

of the critical point is obtained by taking the limits γ→
γc = 1/2 and τ →∞ in eq. (6), yielding

〈ε〉 ∼ 1
2
erfc

[
τ1/2 (γc− γ)
[2γc (1− γc)]1/2

]
. (8)

Finite-size scaling analysis. – Considering the “size”
of the system as the number of learning trials τ , we proceed
now to examine the sharpness of the phase transition at γc
using finite-size scaling [9]. This threshold phenomenon is
best appreciated in fig. 3, which exhibits the dependence
of the average learning error on the distance to the critical
parameter for different values of τ . As the number of trials
τ increases, the difference between the regimes γ < γc and
γ > γc becomes evident. All curves intersect at γ = γc for
which the average error is a constant given by eq. (1).
The key insight is obtained when one considers the

average learning error as a function of the reduced variable
(γc− γ) τ1/2. Use of this reduced variable produces the
collapse of the data for different τ into a single scaling
function as shown in the inset of fig. 3. We can improve
the accuracy of the estimate of the scaling functions by
fixing τ to a large value, say τ = 105, and then varying γ
in the vicinity of a fixed γc. The result of this procedure
is illustrated in fig. 4 where we show the scaling functions
for four different values of C and fixed N .
As illustrated in fig. 4, the data is fitted very well by

the functional form

〈ε〉= 1
2
erfc
[
a (N)+ b (N,C) (γc− γ) τ1/2

]
, (9)
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Fig. 3: Average learning error as function of the distance
to the critical noise parameter for N = 10 and C = 2. The
symbols are the simulation results for (top to bottom in the
positive ordinate region) τ = 1, 10, 100, 200, 400 and 800.
The inset shows the data collapse when they are plotted vs.
the reduced variable (γc− γ) τ1/2. The lines are guides to the
eyes.
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Fig. 4: Average learning error as function of the reduced
variable (γc− γ)τ1/2 for N = 10 and C = 1 (©), 2 (�), 3 (�)
and 5 (�). The symbols are the simulation results and the
lines are given by the scaling function (9) with the parameter
b obtained from the fitting of the data.

which has a single fitting parameter, b (N,C). The para-
meter a (N) is obtained by setting γ = γc and then using
the expression of 〈εc〉, given by eq. (1). The final result is

a (N) = erfc−1
[
2 (N − 1)
N

]
, (10)

where erfc−1 (x) stands for the inverse complementary
error function. We note that a (2) = 0 and a (N)< 0 for
N > 2.
In addition, we assume that b (N,C) = b (γc) and plot

this fitting parameter in fig. 5 for a large selection of
values of N and C. More pointedly, for each value of N
(represented by different symbols in the figure) we vary C
from 1 to N − 1 to obtain scaling functions as those shown

0.0 0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

γ c

b

Fig. 5: Dependence of the fitting parameter b on the ratio γc for
N = 2 (×), N = 10 (©), N = 20 (�), N = 30 (�) and N = 40
(�). The solid line is given by eq. (11).

in fig. 4. Then these functions are fitted using eq. (9) in
order to determine the fitting parameter b. For N > 4 the
data is fitted very well by the function

b (γc) =
b′

[γc (1− γc)]1/2
(11)

with b′ = 0.65. Note that for N = 2, eq. (8) yields b′ =
1/
√
2≈ 0.71.
Figure 5 reveals a most interesting symmetry: for fixed
N the average learning error when plotted vs. the reduced
variable κ≡ (γc− γ) τ1/2 is invariant to the change C→
N −C which implies γc→ 1− γc. In particular, in fig. 4 for
which N = 10, the results for C = 9 are identical to those
displayed for C = 1, the results for C = 8 to those for C = 2
and so on. More pointedly, choosing κ/τ1/2 = 0.01 this
symmetry means that the associative algorithm performs
identically for the parameter set C = 1 and γ = 0.89 and
for the set C = 9 and γ = 0.09, so there is an exact
balance between the performance deterioration due to an
increase of the ambiguity of the task and the performance
increment due to a decrease of the out-of-context-words
noise. It should be emphasized that this symmetry, which
is a direct consequence of eq. (11), is exact only in the
limits τ →∞ and γ→ γc.
A word is in order about our choices of the fitting

functions eqs. (9) and (11) as well as of the scaling τ1/2. All
these elements appear in the analytical study of the special
case N = 2 that serves as guide for the empirical analysis
of the general case. For arbitrary N and C, the probability
that object 1 appearsm1 times, object 2 appearsm2 times,
etc. in τ learning episodes is given by the multinomial
distribution

τ !

m1! . . .mN !
(1− γ)m1

[
(1− γ) C − 1

N − 1 + γ
C

N − 1
]τ−m1
(12)

with
∑
imi = τ and we have assumed that label 1 refers

to the correct object. The learning error is obtained
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by summing over the mi’s while giving the appropriate
weights to ties of distinct multiplicity and weight 1 to
configurations such that mi >m1 for some i > 1. For
large τ we move to a continuous variable approximation
in which the sums are replaced by integrals and the
multinomial is approximated by a multivariate Gaussian
distribution where the means 〈mi〉, variances Var(mi) and
covariances Cov(mi,mj) all scale linearly with τ . Since
the relevant limits of the sums scale with τ also (see,
e.g., eq. (5)), the elimination of the dependence on τ
in the integrand leads to the multidimensional Gaussian
integrals whose limits scale with τ1/2 in our approximation
scheme. This argument also explains our choice of the
complementary error function in eq. (9). For γ→ γc
all event probabilities in the multinomial (12) become
identical and equal to 1− γc (see eq. (2)). This implies that
Var(mi) = τγc (1− γc) for all i which then explains our
choice of the functional form for the parameter b (N,C) =
b (γc) (see eq. (11)) that controls the sharpness of the
learning error. Moreover, eq. (11), which stems from the
statistical equivalence between the objects at the critical
point, is responsible for the symmetry of the learning error
discussed before.
To obtain the average learning error for an infinitely

large lexicon, N →∞, we note first that a(N)∼− ln1/2N
in this limit. To proceed further we have to consider two
cases. First, if the context size C grows linearly with N
(i.e., 0<γc < 1) then b(γc) is finite and the only diverging
term in the argument of eq. (9) is a(N)→−∞ which
leads to 〈ε〉→ 1. Second, if C remains finite when N →
∞ then 1− γc = 1/N → 0 and so b(γc)∼N1/2. Since the
divergence of b to +∞ is faster than the divergence of a
to −∞ we find 〈ε〉→ 0 in this case.
Statistics of stasis. – A distinctive feature of the

learning process revealed by fig. 1 is the existence of long
periods when the learning error stands at zero value, i.e.,
phh > pih for all objects i �= h. These periods or stases are
characterized by repeated additions of credence units to
the confidence values pih and they end when one (or more)
of the N − 1 confidences pih, i �= h, equals phh.
We begin the analysis of the distribution Pc(∆τ) of the

durations ∆τ of the stases at the critical parameter γc
by showing in fig. 6 how the total number of learning
trials τ0 (basically a cutoff time) affects this distribution.

The rescaling τ
3/2
0 Pc(∆τ/τ0) makes the results essentially

independent of the cutoff parameter τ0 provided ∆τ/τ0
is not too small (data not shown). The curves exhibit a
clear power-law behavior with exponent −3/2, which is
the mean-field exponent for the size of avalanches in self-
organized critical models [10].
A rough analogy between our learning model and a

sand-pile–like model goes as follows. Let us interpret the
confidence value associated to an object as the amount
of sand at a given point in space, and assume that the
sole trigger of the avalanches is the amount of sand at the
position in the pile corresponding to the correct object. At

100 101 102 103 104 105
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10 7
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10 5

10 4

10 3

10 2

10 1

P
c

Fig. 6: Distribution of stases for N = 20, C = 6, γ = γc = 0.7,
and (bottom to top) τ0 = 10

3, 104 and 105. The slope of the
straight line is −3/2.

each learning episode, C grains of sand are distributed at
C distinct points in the pile according to the probabilities
given by the noise and the sampling process. Whenever the
amount of sand at the triggering site is greater than of any
other site (here is the mean-field assumption: all sites are
neighbors of each other) an avalanche takes place. Hence
the periods of zero learning error correspond to an ongoing
avalanche. The avalanche stops when the amount of sand
of one or more neighbors equal that of the triggering site,
thus flattening the slope of the pile in the direction that
connects those sites.
In addition, we find that away from the critical point the

distribution P (∆τ) is exponential and that the average
duration of the stases diverges like 〈∆τ〉 ∼ |γc− γ|−1 as
γ→ γc.
As expected, these mean-field critical exponents are

robust to changes in the model parameters N and C. In
fact, for N = 2 and C = 1 the distribution P (∆τ) can be
easily calculated analytically for any value of γ since this is
the classical ruin problem in which a gambler with initial
capital z = 1 plays against an infinitely rich adversary.
The results for the duration of the game ∆τ are simply

Pc(∆τ)≈ (2/π)1/2 (∆τ)−3/2 and 〈∆τ〉= (1/2) | γc− γ |−1
(see Chapt. XIV of [11]).
Changes in the number of objects N have no significant

influence on Pc(∆τ) whereas changes in the context size
C produce a shift on the distribution, without affecting
the power-law exponent, as illustrated in fig. 7. In fact, an
increase of C increases the frequency of short stases and,
consequently, reduces the frequency of long ones. This is
expected since the larger the context size, the greater the
number of mismatching objects that have their confidences
updated, and so the greater the odds of occurrence of the
jump condition pih � phh for some object i �= h.
Finally, we note that although we have focused on the

periods of the learning process when the error learning is
0, the very same conclusions hold for the periods when the
learning error is 1.
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Fig. 7: Distribution of stases for N = 20, τ0 = 10
5 and (bottom

to top at ∆τ = 1) C = 1, 2, 5. The slope of the straight line is
−3/2.

Conclusion. – The view of language as a collective
phenomenon arising out of local social interactions has
prompted its modeling and investigation through statis-
tical physics concepts and tools [12]. Words have been
likened to genes and their evolution studied within a popu-
lation genetics framework [13,14], whereas the competition
between whole languages has been considered using popu-
lation dynamics models [15–17]. The study of the boot-
strap of a common lexicon among a large population of
individuals has revealed a sharp phase transition towards
shared conventions [18] as well as an unexpected connec-
tion with random occupancy problems in the case only two
individuals interact but the lexicon size is very large [19].
The problem of acquiring, rather than bootstrapping,

a fixed lexicon from observational learning is relevant to
developmental psychology since it allows a quantitative
appraisal of the associationist hypothesis on early word
learning [1]. In particular, we show that the utterance of
out-of-context words may result in severe limitations to
learning, depending on the ratio C/N between the number
of objects presented to the learner at a learning trial and
the total number of objects. If this ratio is small (i.e., γc
is close to 1) then this noise effect is largely irrelevant
and the lexicon can quickly be learned to perfection.
However, for large values of this ratio (i.e., γc is close to
0) learning becomes impossible regardless of the number
of trials τ . Finite-size scaling shows that the threshold
phenomenon persists across a region of size τ−1/2 around
γc and offers the explicit functional form of the learning
error in this region resorting to the single fitting parameter
b′ introduced in eq. (11).
The simplicity of our associative learning algorithm

allowed us to consider the learning of the distinct words
as independent stochastic processes. Interactions between

words, such as the mutual exclusivity constraint that
instructs children to associate novel words to unnamed
objects [1], are well established in developmental psychol-
ogy and it would be interesting to see whether and how
they alter the characteristics of the critical phenomenon
reported here.

∗ ∗ ∗

This research was supported by The Southern Office of
Aerospace Research and Development (SOARD), Grant
No. FA9550-10-1-0006, and Conselho Nacional de Desen-
volvimento Cient́ıfico e Tecnológico (CNPq). PFCT was
supported by Fundação de Amparo à Pesquisa do Estado
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