90 research outputs found

    Classifying ^*-homomorphisms I: Unital simple nuclear CC^*-algebras

    Full text link
    We classify the unital embeddings of a unital separable nuclear CC^*-algebra satisfying the universal coefficient theorem into a unital simple separable nuclear CC^*-algebra that tensorially absorbs the Jiang--Su algebra. This gives a new and essentially self-contained proof of the stably finite case of the unital classification theorem: unital simple separable nuclear CC^*-algebras that absorb the Jiang--Su algebra tensorially and satisfy the universal coefficient theorem are classified by Elliott's invariant of KK-theory and traces.Comment: 130 page

    Tracially Complete C*-Algebras

    Full text link
    We introduce a new class of operator algebras -- tracially complete C*-algebras -- as a vehicle for transferring ideas and results between C*-algebras and their tracial von Neumann algebra completions. We obtain structure and classification results for amenable tracially complete C*-algebras satisfying an appropriate version of Murray and von Neumann's property gamma for II_1 factors. In a precise sense, these results fit between Connes' celebrated theorems for injective II_1 factors and the unital classification theorem for separable simple nuclear C*-algebras. The theory also underpins arguments for the known parts of the Toms-Winter conjecture.Comment: 130 page

    Thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion - A case study.

    Get PDF
    Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1  min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure

    Cartan subalgebras and the UCT problem, II

    Get PDF
    We show that outer approximately represenbtable actions of a finite cyclic group on UCT Kirchberg algebras satisfy a certain quasi-freeness type property if the corresponding crossed products satisfy the UCT and absorb a suitable UHF algebra tensorially. More concretely, we prove that for such an action there exists an inverse semigroup of homogeneous partial isometries that generates the ambient C*-algebra and whose idempotent semilattice generates a Cartan subalgebra. We prove a similar result for actions of finite cyclic groups with the Rokhlin property on UCT Kirchberg algebras absorbing a suitable UHF algebra. These results rely on a new construction of Cartan subalgebras in certain inductive limits of Cartan pairs. We also provide a characterisation of the UCT problem in terms of finite order automorphisms, Cartan subalgebras and inverse semigroups of partial isometries of the Cuntz algebra O2\mathcal{O}_2. This generalizes earlier work of the authors.Comment: minor revisions; final version, accepted for publication in Math. Ann.; 26 page

    A comparison of bioclimatic conditions on Franz Josef Land (the Arctic) between the turn of the nineteenth to twentieth century and present day

    Get PDF
    The paper presents the variability of meteorological conditions: air temperature, wind speed and relative air humidity; and biometeorological indices: wind chill temperature, predicted clothing insulation and accepted level of physical activity on Franz Josef Land (in Teplitz Bay and Calm Bay) in the years 1899–1931. It employs meteorological measurements taken during four scientific expeditions to the study area. The analysis mainly covered the period October–April, for which the most complete data set is available. For that period of the year, which includes the part of the year with the Franz Josef Land’s coldest air temperatures, the range and nature of changes in meteorological and biometeorological conditions between historical periods and the modern period (1981–2010) were studied. The data analysis revealed that during the three oldest expeditions (which took place in the years 1899–1914), the biometeorological conditions in the study area were more harsh to humans than in the modern period (1981–2010) or similarly harsh. In contrast, during the 1930/1931 expedition, which represents the Early Twentieth CenturyWarming (ETCW), conditions were clearly more favourable (including predicted clothing insulation being 0.3 clo lower and 4.0 °C higher wind chill temperature than conditions observed nowadays)

    Band structure of CuMnAs probed by optical and photoemission spectroscopy

    Get PDF
    5 pages, 5 figures + Supplementary InformationTetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys.Rev.B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell.We acknowledge support from National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042); Grant Agency of the Czech Republic under Grant No. 15-13436S; CEDAMNF (CZ.02.1.01/0.0/0.0/15_003/0000358) of the Czech ministry of education (MŠMT) as well as its LM2015087 and LNSMLNSpin grants; Cariplo Foundation, Grant No. 2013-0726 (MAGISTER); Spanish MINECO under MAT2015-67593-P project and the ‘Severo Ochoa’ Programme (SEV-2015-0496); EU FET Open RIA Grant No. 766566; Engineering and Physical Sciences Research Council Grant No. EP/P019749/1. P.W. acknowledges support from the Royal Society through a University Research Fellowship.Peer reviewe

    Sleep, vigilance, and thermosensitivity

    Get PDF
    The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs

    Distortions of perceived volume and length of body parts

    Get PDF
    We experience our body as a 3D, volumetric object in the world. Measures of our conscious body image, in contrast, have investigated the perception of body size along one or two dimensions at a time. There is, thus, a discrepancy between existing methods for measuring body image and our subjective experience of having 3D body. Here we assessed in a sample of healthy adults the perception of body size in terms of its 1D length and 3D volume. Participants were randomly assigned to two groups using different measuring units (other body part and non-body object). They estimated how many units would fit in a perceived size of body segments and the whole body. The patterns of length and volume misperception across judged segments were determined as their perceived size proportional to their actual size. The pattern of volume misperception paints the representation of 3D body proportions resembling those of a somatosensory homunculus. The body parts with a smaller actual surface area relative to their volume were underestimated more. There was a tendency for body parts underestimated in volume to be overestimated in length. Perceived body proportions thus changed as a function of judgement type while showing a similarity in magnitude of the absolute estimation error, be it an underestimation of volume or overestimation of length. The main contribution of this study is assessing the body image as a 3D body representation, and thus extending beyond the conventional ‘allocentric’ focus to include the body on the inside. Our findings highlight the value of studying the perceptual distortions “at the baseline”, i.e. in healthy population, so as to advance the understanding of the nature of perceptual distortions in clinical conditions
    corecore