155 research outputs found

    A web-based platform for people with memory problems and their caregivers (CAREGIVERSPRO-MMD): Mixed-methods evaluation of usability

    Get PDF
    Background: The increasing number of people with dementia (PwD) drives research exploring Web-based support interventions to provide effective care for larger populations. In this concept, a Web-based platform (CAREGIVERSPRO-MMD, 620911) was designed to (1) improve the quality of life for PwD, (2) reduce caregiver burden, (3) reduce the financial costs for care, and (4) reduce administration time for health and social care professionals. Objective: The objective of this study was to evaluate the usability and usefulness of CAREGIVERSPRO-MMD platform for PwD or mild cognitive impairment (MCI), informal caregivers, and health and social care professionals with respect to a wider strategy followed by the project to enhance the user-centered approach. A secondary aim of the study was to collect recommendations to improve the platform before the future pilot study. Methods: A mixed methods design was employed for recruiting PwD or MCI (N=24), informal caregivers (N=24), and professionals (N=10). Participants were asked to rate their satisfaction, the perceived usefulness, and ease of use of each function of the platform. Qualitative questions about the improvement of the platform were asked when participants provided low scores for a function. Testing occurred at baseline and 1 week after participants used the platform. The dropout rate from baseline to the follow-up was approximately 10% (6/58). Results: After 1 week of platform use, the system was useful for 90% (20.75/23) of the caregivers and for 89% (5.36/6) of the professionals. When users responded to more than 1 question per platform function, the mean of satisfied users per function was calculated. These user groups also provided positive evaluations for the ease of use (caregivers: 82%, 18.75/23; professionals: 97%, 5.82/6) and their satisfaction with the platform (caregivers: 79%, 18.08/23; professionals: 73%, 4.36/6). Ratings from PwD were lower than the other groups for usefulness (57%, 13/23), ease of use (41%, 9.4/23), and overall satisfaction (47%, 11/23) with the platform (

    Multiparameter antibiotic resistance detection based on hydrodynamic trapping of individual E. coli

    Get PDF
    There is an urgent need to develop novel methods for assessing the response of bacteria to antibiotics in a timely manner. Antibiotics are traditionally assessed via their effect on bacteria in a culture medium, which takes 24-48 h and exploits only a single parameter, i.e. growth. Here, we present a multiparameter approach at the single-cell level that takes approximately an hour from spiking the culture to correctly classify susceptible and resistant strains. By hydrodynamically trapping hundreds of bacteria, we simultaneously monitor the evolution of motility and morphology of individual bacteria upon drug administration. We show how this combined detection method provides insights into the activity of antimicrobials at the onset of their action which single parameter and traditional tests cannot offer. Our observations complement the current growth-based methods and highlight the need for future antimicrobial susceptibility tests to take multiple parameters into account

    Centre selection for clinical trials and the generalisability of results: a mixed methods study.

    Get PDF
    BACKGROUND: The rationale for centre selection in randomised controlled trials (RCTs) is often unclear but may have important implications for the generalisability of trial results. The aims of this study were to evaluate the factors which currently influence centre selection in RCTs and consider how generalisability considerations inform current and optimal practice. METHODS AND FINDINGS: Mixed methods approach consisting of a systematic review and meta-summary of centre selection criteria reported in RCT protocols funded by the UK National Institute of Health Research (NIHR) initiated between January 2005-January 2012; and an online survey on the topic of current and optimal centre selection, distributed to professionals in the 48 UK Clinical Trials Units and 10 NIHR Research Design Services. The survey design was informed by the systematic review and by two focus groups conducted with trialists at the Birmingham Centre for Clinical Trials. 129 trial protocols were included in the systematic review, with a total target sample size in excess of 317,000 participants. The meta-summary identified 53 unique centre selection criteria. 78 protocols (60%) provided at least one criterion for centre selection, but only 31 (24%) protocols explicitly acknowledged generalisability. This is consistent with the survey findings (n = 70), where less than a third of participants reported generalisability as a key driver of centre selection in current practice. This contrasts with trialists' views on optimal practice, where generalisability in terms of clinical practice, population characteristics and economic results were prime considerations for 60% (n = 42), 57% (n = 40) and 46% (n = 32) of respondents, respectively. CONCLUSIONS: Centres are rarely enrolled in RCTs with an explicit view to external validity, although trialists acknowledge that incorporating generalisability in centre selection should ideally be more prominent. There is a need to operationalize 'generalisability' and incorporate it at the design stage of RCTs so that results are readily transferable to 'real world' practice

    Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information

    Get PDF
    Theoretical and experimental studies suggest that oscillatory modes of processing play an important role in neuronal computations. One well supported idea is that the net excitatory input during oscillations will be reported in the phase of firing, a ‘rate-to-phase transform’, and that this transform might enable a temporal code. Here, we investigate the efficiency of this code at the level of fundamental single cell computations. We first develop a general framework for the understanding of the rate-to-phase transform as implemented by single neurons. Using whole cell patch-clamp recordings of rat hippocampal pyramidal neurons in vitro, we investigated the relationship between tonic excitation and phase of firing during simulated theta frequency (5 Hz) and gamma frequency (40 Hz) oscillations, over a range of physiological firing rates. During theta frequency oscillations, the phase of the first spike per cycle was a near-linear function of tonic excitation, advancing through a full 180 deg, from the peak to the trough of the oscillation cycle as excitation increased. In contrast, this relationship was not apparent for gamma oscillations, during which the phase of firing was virtually independent of the level of tonic excitatory input within the range of physiological firing rates. We show that a simple analytical model can substantially capture this behaviour, enabling generalization to other oscillatory states and cell types. The capacity of such a transform to encode information is limited by the temporal precision of neuronal activity. Using the data from our whole cell recordings, we calculated the information about the input available in the rate or phase of firing, and found the phase code to be significantly more efficient. Thus, temporal modes of processing can enable neuronal coding to be inherently more efficient, thereby allowing a reduction in processing time or in the number of neurons required

    Attachment and antibiotic response of early-stage biofilms studied using resonant hyperspectral imaging

    Get PDF
    Many bacterial species readily develop biofilms that act as a protective matrix against external challenge, e.g., from antimicrobial treatment. Therefore, biofilms are often responsible for persistent and recurring infections. Established methods for studying biofilms are either destructive or focus on the biofilm’s surface. A non-destructive method that is sensitive to the underside of the biofilm is highly desirable, as it allows studying the penetration of antibiotics through the film. Here, we demonstrate that the high surface sensitivity of resonant hyperspectral imaging provides this capability. The method allows us to monitor the early stages of Escherichia coli biofilm formation, cell attachment and microcolony formation, in-situ and in real-time. We study the response of the biofilm to a number of different antibiotics and verify our observations using confocal microscopy. Based on this ability to closely monitor the surface-bound cells, resonant hyperspectral imaging gives new insights into the antimicrobial resistance of biofilms

    Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises

    Full text link
    Dynamics of an ensemble of NN-unit FitzHugh-Nagumo (FN) neurons subject to white noises has been studied by using a semi-analytical dynamical mean-field (DMF) theory in which the original 2N2 N-dimensional {\it stochastic} differential equations are replaced by 8-dimensional {\it deterministic} differential equations expressed in terms of moments of local and global variables. Our DMF theory, which assumes weak noises and the Gaussian distribution of state variables, goes beyond weak couplings among constituent neurons. By using the expression for the firing probability due to an applied single spike, we have discussed effects of noises, synaptic couplings and the size of the ensemble on the spike timing precision, which is shown to be improved by increasing the size of the neuron ensemble, even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles respond to an input spike with a partial synchronization. DMF theory is extended to a large cluster which can be divided into multiple sub-clusters according to their functions. A model calculation has shown that when the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy sub-clusters with feed-forward couplings, as in the synfire chain. Results calculated by our DMF theory are nicely compared to those obtained by direct simulations. A comparison of DMF theory with the conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice

    Informed design of educational technology for teaching and learning? Towards an evidence-informed model of good practice

    Get PDF
    The aim of this paper is to model evidence-informed design based on a selective critical analysis of research articles. We draw upon findings from an investigation into practitioners’ use of educational technologies to synthesise and model what informs their designs. We found that practitioners’ designs were often driven by implicit assumptions about learning. These shaped both the design of interventions and the methods sought to derive evaluations and interpret the findings. We argue that interventions need to be grounded in better and explicit conceptualisations of what constitutes learning in order to have well-informed designs that focus on improving the quality of student learning

    Computational modeling with spiking neural networks

    Get PDF
    This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific application, the functioning of the evolving spiking neural network (eSNN) classification method is presented in detail and the principles of numerous eSNN based applications are highlighted and discussed

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=1−3M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • 

    corecore