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Computationa37. Computational Modeling with Spiking Neural
Networks

Stefan Schliebs, Nikola Kasabov

This chapter reviews recent developments in the
area of spiking neural networks (SNN) and sum-
marizes the main contributions to this research
field. We give background information about the
functioning of biological neurons, discuss the most
important mathematical neural models along with
neural encoding techniques, learning algorithms,
and applications of spiking neurons. As a specific
application, the functioning of the evolving spik-
ing neural network (eSNN) classification method is
presented in detail and the principles of numer-
ous eSNN based applications are highlighted and
discussed.
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37.1 Neurons and Brain

The brain is arguably the most complex organ of the
human body. It contains approximately 1011 neurons,
which are the elementary processing units of the brain.
These neurons are interconnected and form a complex
and very dense neural network. On average 1 cm3 of
brain matter contains 104 cell bodies and several kilo-
meters of wire, i. e., connections between neurons in the
form of branching cell extensions.

Like most cells in the human body, neurons main-
tain a certain ion concentration across their cell mem-
brane. Therefore, the membrane contains ion pumps
which actively transport sodium ions from the intra-
cellular to the extra-cellular liquid. Potassium ions are
pumped in the opposite direction from the outside to the
inside of the cell. In addition to the ion pumps, a num-

ber of specialized proteins, so-called ion channels, are
embedded in the membrane. They allow a slow inward
flow of sodium ions into the cell, while potassium ions
leak outwards into the extra-cellular liquid. Thus, the
ion streams at the channels have opposite directions to
the ion pumps. Furthermore, since both ion streams dif-
fer in their strengths, an electrical potential exists across
the cell membrane. The inside of the cell is negatively
charged in relation the extra-cellular liquid. The mem-
brane is polarized which is the resting condition of the
neuron CE

0 .
A large variety of neural shapes and sizes exist in

the brain. A typical neuron is illustrated in Fig. 37.1.
The central part of the neuron is called the soma, in
which the nucleus is located. It contains the genetic in-
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Fig. 37.1 Schematic illustration of a typical neuron CE1 in the human brain. The main part of the neuron is the soma
containing the genetic information, the dendrites, and the axon, which are responsible for the reception and emission of
electrical signals. Signal transmission occurs at the synapse between two neurons, see text for detailed explanations

formation of the cell, i. e., the DNA, from which genes
are expressed and proteins constructed that are impor-
tant for the functioning of the cell. The cell body has
a number of cellular branch-like extensions known as
dendrites. Dendrites are specialized for receiving elec-
trical signals from other neurons that are connected to
them. These signals are short pulses of electrical activ-
ity, also known as spikes or action potentials. If a neuron
is stimulated by the spike activity of surrounding neu-
rons and the excitation is strong enough, the cell triggers
a spike. The spike is propagated via the axon, a long
thin wire-like extension of the cell body, to the axonal
terminals. These terminals in turn are connected to the
dendrites of surrounding neurons and allow the trans-
fer of information from one neuron to the other. Thus
an axon is responsible for sending information to other
neurons connected to it. An axon may be covered by

myelin sheaths that allow a faster propagation of electri-
cal signals. These sheaths act as insulators and prevent
the dissipation of the depolarization wave caused by an
electrical spike triggered in the soma.

Information exchange between two neurons occurs
at a synapse, which is a specialized structure that links
two neurons together. A synapse is illustrated in the
upper middle part of Fig. 37.1. The sending neuron is
called pre-synaptic neuron, while the neuron receiving
the signal is called post-synaptic. Sending information
involves the generation of an action potential in the
soma of the pre-synaptic cell. As described before, this
potential is propagated through the axon of the neu-
ron to the axonal terminals. These terminals contain
the synapses in which neurotransmitter chemicals are
stored. Whenever a spike is propagated through the
axon, a portion of these neurotransmitters is released
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into a small gap between the two neurons also known
as the synaptic cleft. The neurotransmitter diffuses into
the cleft and interacts with specialized receptor proteins
of the post-synaptic neuron. The activation of these re-
ceptors causes the sodium ion channels to open, which
in turn results in the flow of sodium ions from the extra-
cellular liquid into the post-synaptic cell. The ionic
concentration across the membrane equalizes rapidly
and the membrane depolarizes. Immediately after the
depolarization the potassium channels open. As a con-
sequence potassium ions stream outside the cell, which
causes the re-polarization of the membrane. The process
of de- and re-polarization, i. e., the action potential, lasts
only around 2 ms, which explains the name spike or
pulse.

A synaptic transmission can be either excitatory
or inhibitory depending on the type of the transmit-
ting synapse. Different neurotransmitters and receptors
are involved in excitatory and inhibitory synaptic
transmissions, respectively. Excitatory synapses release
a transmitter called l-glutamate and increase the likeli-
hood of the post-synaptic neuron triggering an action
potential following stimulation. On the other hand,
inhibitory synapses release a neurotransmitter called
GABA and decrease the likelihood of a post-synaptic
potential.

The efficacy of a synapse, i. e., the strength of the
post-synaptic response due to the neurotransmitter re-
lease in the synapse, is not fixed. The increase or
decrease of the efficacy of a synapse is called synap-
tic plasticity and it enables the brain to learn and to
memorize. There are several different possibilities to
accomplish synaptic plasticity. One way is to change
the time period of receptor activity in the post-synaptic
neuron. Longer periods of receptor activity cause the
ion channels to remain open for a longer time, which
in turn results in a larger amount of ions flowing into
the post-synaptic cell. Thus, the post-synaptic response
increases. Short periods of receptor activity have the
opposite effect.

Another way to change the synaptic efficacy is to
increase or decrease the number of receptors, which
would have a direct impact on the number of opened
ion channels and as a consequence on the post-synaptic
potential. The third possibility is a change of the
amount of neurotransmitter chemicals released into the
synaptic cleft. Here larger/smaller amounts would in-
crease/decrease the synaptic efficacy.

Comprehensive information and details about the
structure, functions, chemistry, and physiology of neu-
rons can be found in a standard textbook on the matter
by [37.1].

37.2 Models of Spiking Neurons

The remarkable information processing capabilities of
the brain have inspired numerous mathematical abstrac-
tions of biological neurons. Spiking neurons represent
the third generation of neural models, incorporating the
concepts of time, neural, and synaptic state explicitly
into the model [37.2]. Earlier artificial neural net-
works were described in terms of mean firing rates and
used continuous signals for transmitting information be-
tween neurons. Real neurons, however, communicate
by short pulses of electrical activity. In order to simulate
and describe biologically plausible neurons in a mathe-
matical and formal way, several different models have
been proposed in the recent past. Figure 37.2 illustrates

Fig. 37.2 Schematic illustration of a mathematical neu-
ronal model. The model receives electrical stimulation in
form of spikes through a number of connected pre-synaptic
neurons. The efficacy of a synapse is modeled in the form
of synaptic weights. Most models focus on the dynamics
of the post-synaptic potential only. Output spikes are prop-
agated via the axon to connected post-synaptic neurons �

schematically the mathematical abstraction of a biolog-
ical neuron.

Neural modeling can be described on several lev-
els of abstraction. On the microscopic level, the neuron
model is described by the flow of ions through the chan-
nels of the membrane. This flow may, among other

Output

Neuron

Synaptic
weights

Input spike trains
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things, depend on the presence or absence of various
chemical messenger molecules. Models at this level of
abstraction include the Hodgkin–Huxley model [37.3]
and the compartment models that describe separate seg-
ments of a neuron by a set of ionic equations.

On the other hand, the macroscopic level treats
a neuron as a homogeneous unit, receiving and emitting
spikes according to some defined internal dynamics.
The underlying principles of how a spike is generated
and carried through the synapse, dendrite, and cell body
are not relevant. These models are typically known un-
der the term integrate-and-fire models.

In the next sections the major neural models are
discussed and their functions are explained. Since the
macroscopic neuronal models are more relevant, the
focus of the survey is put on these models. The only mi-
croscopic model presented here is the Hodgkin–Huxley
model, due to its high significance for the research area
of neuroscience.

37.2.1 Hodgkin–Huxley Model

This model dates back to the work of Alan Lloyd
Hodgkin and Andrew Huxley in 1952 where they per-
formed experiments on the giant axon of a squid [37.3].
Due to the significance of their contribution to neu-
roscience, both received the 1963 Nobel Prize in
Physiology and Medicine. The model is a detailed de-
scription of the influences of the conductance of ion
channels on the spike activity of the axon. The diameter
of the squid’s giant axon is approximately 0.5 mm and
is visible to the naked eye. Since electrodes had to be
inserted into the axon, its large size was a big advantage
for biological analysis at that time.

Hodgkin and Huxley discovered three different ion
currents in a neuron: a sodium, potassium, and a leak
current. Voltage-dependent ion channels control the
flow of ions through the cell membrane. Due to an ac-
tive transport mechanism, the ion concentration within
the cell differs from that in the extra-cellular liquid,
resulting in an electrical potential across the cell mem-
brane. In the mathematical model such a membrane is
described as an electrical circuit consisting of a capaci-
tor, resistors, and batteries that model the ion channels,
(Fig. 37.3). The current I at a time t splits into the cur-
rent stored in the capacitor and the additional currents
passing through each of the ion channels

I (t) = Icap(t)+
∑

k

Ik(t) , (37.1)

where the sum runs over all ion channels.

Extra-cellular medium

I (t)

GL

C

GK GNa

VL VK VNa

Intra-cellular medium

Fig. 37.3 Schematic illustration of the Hodgkin–Huxley
model in the form of an electrical circuit (after [37.3]).
The model represents the biophysical properties of the cell
membrane of a neuron. The semipermeable cell membrane
separates the interior of the cell from the extra-cellular li-
quid and thus acts as a capacitor. Ion movements through
the cell membrane (in both directions) are modeled in the
form of (constant and variable) resistors. In the diagram the
conductance of the resistors Gx = 1/Rx is shown. Three
ionic currents exist: A sodium current (Na ions), potassium
current (K ions), and a small leakage current (L) that is
primarily carried by chloride ions

Substituting Icap(t) = C du/dt by applying the def-
inition of the capacitance C = Q/u, where Q is the
charge and u the voltage across the capacitor leads to

C
du

dt
= −

∑

k

Ik(t)+ I (t) . (37.2)

As mentioned earlier, in the Hodgkin–Huxley model
three ion channels are modeled: A sodium current,
potassium current, and a small leakage current that
is primarily carried by chloride ions. Hence the sum
in (37.1) consists of three different components that are
formulated as

∑

k

Ik(t) = GNam3h(u − VNa)

+ GKn4(u − VK)+ GL(u − VL) , (37.3)

where VNa, VK, and VL are constants called reverse po-
tentials. Variables GNa and GK describe the maximum
conductance of the sodium and potassium channel,
respectively, while the leakage channel is voltage-
independent with a conductance of GL. The variables
m, n, and h are gating variables whose dynamics are
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Table 37.1 Parameters of the Hodgkin–Huxley model. The membrane capacitance is C = μF/cm2. The voltage scale is
shifted in order to have a resting potential of zero

x Vx (mV) Gx (mS/cm2)

Na 115 120

K −12 36

L 10.6 0.3

x αx (u) βx (u)

n 0.1−0.01u
exp(1−0.1u)−1 0.125 exp

(− u
80

)

m 2.5−0.1u
exp(2.5−0.1u)−1 4 exp

(− u
18

)

h 0.07 exp
(− u

20

) 1
exp(3−0.1u)+1

described by differential equations of the form
m

dt
= αm(u)(1−m)−βm(u)m , (37.4)

n

dt
= αn(u)(1−n)−βn(u)n , (37.5)

h

dt
= αh(u)(1−h)−βh(u)h , (37.6)

where m and h control the sodium channel and variable
n the potassium channel. Functions αx and βx , where
x ∈ {m, n, h}, represent empirical functions of the volt-
age across the capacitor u, that need to be adjusted

0 20 40 60 80 100

a) u (mV)

t (ms)

120
100
80
60
40
20
0

–20

b) I (µA)
8
6
4
2
0

Fig. 37.4 (a) Evolution of the membrane potential u for
a content input current I0 using the Hodgkin–Huxley
model. The current is switched on at time t = 10 ms for
a duration of 70 ms. (b) The stimulus is strong enough to
generate a spike train across the cell membrane (upper di-
agram). As soon as the input current vanishes (I = 0), the
electrical potential returns to its resting potential (u = 0)

in order to simulate a specific neuron. Using a well-
parameterized set of the above equations, Hodgkin and
Huxley were able to describe a significant amount of
data collected from experiments with the giant axon of
a squid. The parameters discovered of the model are
given in Table 37.1.

The dynamics of the Hodgkin–Huxley model are
presented in Fig. 37.4. For the simulation, the param-
eter values from Table 37.1 are utilized. The membrane
is stimulated by a constant input current I0 = 7 μA,
switched on at time t = 10 ms for a duration of 70 ms.
The current is switched off at time t = 80 ms. For
t < 10 ms, no input stimulus occurs and the potential
across the membrane stays at the resting potential. For
10 ms ≤ t ≤ 80 ms the current is strong enough to gen-
erate a sequence of spikes across the cell membrane.
At time t > 80 ms and input current I = 0, the electrical
potential returns to its resting potential.

Additional reading on the Hodgkin–Huxley model
can be found in the excellent review of [37.4], which
also summarizes the historical developments of the
model. A guideline for computer simulations of the
model using the simulation platform GENESIS (general
neural simulation system) can be found in [37.5].

37.2.2 Leaky Integrate-and-Fire Model (LIF)

The Hodgkin–Huxley model can reproduce electrophys-
iological measurements very accurately. Nevertheless,
the model is computationally costly and simpler, more
phenomenological models are required for the simula-
tion of larger networks of spiking neurons. The leaky
integrate-and-fire neuron (LIF) may be the best-known
model for simulating spiking networks efficiently. The
model has a long history and was first proposed by
Lapicque in 1907, long before the actual mechanisms of
action potential generation were known [37.6]. Discus-
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I (t)

C

R

Fig. 37.5 Schematic illustration of the leaky integrate-and-
fire model in the form of an electrical circuit. The model
consists of a capacitor C in parallel with a resistor R, driven
by a current I = I (R)+ Icap

sions of this work can be found in [37.7, 8]. However, it
was Knight who introduced the term integrate-and-fire
in [37.9]. He called these models forgetful, but the term
leaky quickly became more popular.

Similar to the Hodgkin–Huxley model, the LIF
model is based on the idea of an electrical circuit
(Fig. 37.5). The circuit contains a capacitor with capac-
itance C and a resistor with a resistance R, where both
C and R are assumed to be constant. The current I (t)
splits into two currents

I (t) = IR + Icap , (37.7)

where Icap charges the capacitor and IR passes through
the resistor. Substituting Icap = C du/dt using the def-
inition for capacity, and IR = u/R using Ohm’s law,
where u is the voltage across the resistor, one obtains

I (t) = u(t)

R
+C

du

dt
. (37.8)

Replacing τm = RC yields the standard form of the
model

τm
du

dt
= −u(t)+ RI (t) . (37.9)

The constant τm is called the membrane time constant of
the neuron. Whenever the membrane potential u reaches
a threshold ϑ, the neuron fires a spike and its potential
is reset to a resting potential ur. It is noteworthy that
the shape of the spike itself is not explicitly described
in the traditional LIF model. Only the firing times are
considered to be relevant. Nevertheless, it is possible to
include the shape of spikes as well [37.10].

A LIF neuron can be stimulated by either an ex-
ternal current Iext or CE

2 by the synaptic input current
Isyn from pre-synaptic neurons. The external current
I (t) = Iext(t) may be constant or represented by a func-

0 20 40 60 80 100

a) u (  )

t (ms)

1.4
1.2

1
0.8
0.6
0.4
0.2

0

b) I (µA)
1.6
1.2
0.8
0.4

0

Fig. 37.6 (a) Evolution of the potential u for a constant in-
put current I0 using the leaky integrate-and-fire model. The
membrane potential u is given in units of the threshold ϑ.
The current is switched on at time t = 10 ms for a duration
of 70 ms. (b) The stimulus is strong enough to generate
a sequence of spike trains (dark arrows). As soon as the
input current vanishes, the potential returns to its resting
potential

tion of time t. Figure 37.6 presents the dynamics of
a LIF neuron stimulated by an input current I0 = 1.2.
The current is strong enough to increase the potential
u until the threshold ϑ is reached. As a consequence,
a spike is triggered and the potential resets to ur = 0.
After the reset, the integration process starts again. At
t = 80 ms, the current is switched off and the potential
returns to its resting potential due to leakage.

If a LIF neuron is part of a network of neurons, it
is usually stimulated by the activity of its pre-synaptic
neurons. The resulting synaptic input current of a neu-
ron i is the weighted sum over all spikes generated by
pre-synaptic neurons j with firing times t(f)

j

I (t) = Isyni
(t) =

∑

j

wij

∑

f

α
(
t − t(f)

j

)
. (37.10)

The weights wij reflect the efficacy of the synapse from
neuron j to neuron i. Negative weights correspond to
inhibitory synapses, while positive weights correspond
to excitatory synapses. The time course of the post-
synaptic current α(·) can be defined in various ways.
In the simplest form it is modeled by Dirac pulse δ(x),
which has a non-zero function value for x = 0 and zero
for all others. Thus the input current caused by a pre-
synaptic neuron decreases/increases the potential u in
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a step-wise manner. More realistic models often em-
ploy different functions usually in the form x exp (−x),
which is typically referred to as an α function.

In Fig. 37.7, a LIF neuron is stimulated by a spike
train from a single pre-synaptic neuron. The post-
synaptic current is modeled in the form of a Dirac pulse
as described above. This results in a step-wise increase
of the post-synaptic potential. If the potential reaches
the threshold ϑ, a spike is triggered and the potential
resets. Due to its simplicity, many LIF neurons can be
connected to form large networks, while still allowing
an efficient simulation.

Extensive additional information about the LIF
model can be found in the excellent textbook [37.11]
and in the two recent reviews by Burkitt [37.12, 13].

37.2.3 Izhikevich Model

Another neural model was proposed in [37.14]. It
is based on the theory of dynamical systems. The
model claims to be as biologically plausible as the
Hodgkin–Huxley model while offering the computa-
tional complexity of LIF models. Depending on its
parameter configuration, the model reproduces differ-
ent spiking and bursting behavior of cortical neurons.
Its dynamics are governed by two variables

dv

dt
= 0.04v2 +5v+140−u + I , (37.11)

du

dt
= a(bv−u) , (37.12)

where v represents the membrane potential of the neu-
ron and u is a membrane recovery variable, which
provides negative feedback for v. If the membrane
potential reaches a threshold ϑ = 30 mV, a spike is trig-
gered and a reset of v and u occurs

if v ≥ 30 mV, then

⎧
⎨

⎩
v ← c

u ← u +d
. (37.13)

Variables a, b, c, d are parameters of the model. De-
pending on their setting, a large variety of neural
characteristics can be modeled. Each parameter has an
associated interpretation. Parameter a represents the de-
cay rate of the membrane potential, b is the sensitivity
of the membrane recovery, and c and d reset v and u,
respectively.

In Fig. 37.8, the meaning of the parameters is graph-
ically explained along with their effect on the dynamics
of the model. For example, if we want to produce a reg-
ular spiking neuron, we would set a = 0.02, b = 0.25,
c = −65, and d = 8.

0 20 40 60 80 100

a) u (t) (mV)

t (ms)

–45

–50

–55

–60

–65

–70

b) Stimulus

Fig. 37.7 Dynamics of the leaky integrate-and-fire model.
The potential u increases due to the effect of pre-synaptic
input spikes. If the membrane potential crosses a thresh-
old ϑ, a spike is triggered (straight dark arrows). The
shape of this action potential is not explicitly described by
the model, only the time of the event is of relevance. The
synapse may have either an inhibitory or an excitatory ef-
fect on the post-synaptic potential that is determined by the
sign of the synaptic weights

More information on this model can be found in the
textbook on dynamical systems in neuroscience [37.15].
There are also a number of articles on the topic,
e.g., the work on the suitability of mathematical mod-
els for simulation of cortical neurons [37.16] and the
large-scale simulation of a mammalian thalamocortical
system [37.17], which involves one million neurons and
almost half a billion synapses.

37.2.4 Spike Response Model (SRM)

The spike response model (SRM) is a generalization
of the LIF model and was introduced in [37.11]. In
this model, the state of a neuron is characterized by
a single variable u. A number of different kernel func-
tions describe the impact of pre-synaptic spikes and
external stimulation on u, but also the shape of the ac-
tual spike and its after-potential. Whenever the state u
reaches a threshold ϑ from below, i. e., u(t) = ϑ and
du(t)/dt > 0, a spike is triggered. In contrast to the LIF
model, the threshold ϑ in SRM is not required to be
fixed, but may depend on the last firing time t̂i of neu-
ron i. For example, the threshold might be increased
after the neuron has spiked (also known as the refrac-
tory period) to avoid triggering another spike during that
time.

TS
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0.2

0 0.050.02 0.1

LTS, TC
RZ

FSRS, IB, CH

8

–55–60–65 –50

TC

RS

IB

CHFS, LTS, RZ

v' = 0.04v2 + 5v +140 – u + l
u' = a(bv – u)

if v = 30 mV,
then v – c, u u + d

Parameter b

Regular spiking (RS)

Fast spiking (FS) Low-threshold spiking (LTS)Chattering (CH)

Resonator (RZ)Thalamo-cortical (TC) Thalamo-cortical (TC)

v (t)

u (t) v (t)

I (t)

Peak 30 mV

Reset c

Reset d

Sensitivity b

–63 mV

–87 mV

20 mV

40 ms

Intrinsically bursting (IB)

Parameter a

Parameter d

Parameter c

4

2
0.05

Decay with rate a

Let ui (t) be the state variable that describes neuron i
at time t and t̂i is the last time when the neuron emitted
a spike, then the evolution of ui (t) can be formulated as

ui (t) = η
(
t − t̂i

)+
∑

j

wij

∑

f

εij
(
t − t̂i , t − t(f)

j

)

+
∞∫

0

κ
(
t − t̂i , s

)
Iext(t − s)ds , (37.14)

where t(f)
j are the firing times of pre-synaptic neurons j,

while wij represents the synaptic efficacy between neu-
ron j and i.

Functions η, ε, and κ are response kernels. The first
kernel, η, is the reset kernel. It describes the dynamics
of an action potential and becomes non-zero each time
a neuron fires. This kernel models the reset of the state
u and its after-potential. A typical implementation is TS

4

η
(
t − t̂i

) = η0

{
K1 exp

(
− t − t̂i

τm

)

− K2

[
exp

(
− t − t̂i

τm

)]

− exp

(
− t − t̂i

τs

)}
θ(t − t̂i ) , (37.15)
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Fig. 37.8 Dynamics of the Izhikevich model. Depending
on the settings of the parameters a, b, c, and d, dif-
ferent neuron characteristics are modeled (generated by
a freely available simulation tool provided by Izhikevich
on http://www.izhikevich.com) TS3 �

where η0 = ϑ equals the firing threshold of the neuron.
The first term in (37.15) models the positive pulse with
a decay rate τm and the second one is the negative spike
after-potential with a decay rate τs, while K1 and K2
act as scaling factors. Function Θ(·) is a step function
known as the Heaviside function

Θ(s) =
⎧
⎨

⎩
0 if s < 0

1 if s ≥ 0
, (37.16)

which ensures that the effect of the η kernel is zero if
the neuron has not emitted a spike, i. e., t < t̂. The shape
of this kernel is presented in Fig. 37.9a, where K1 = 1,
K2 = 5, τs = 0.005, and τm = 0.01 were used.

The second kernel determines the time course of
a post-synaptic potential whenever the neuron receives
an input spike. The kernel depends on the last firing time
of the neuron t − t̂ and on the firing times t − t(f)

j of the
pre-synaptic neurons j. Due to the first dependence the
post-synaptic neuron may respond differently to input
spikes received immediately after a post-synaptic spike.
A typical implementation of this kernel is e.g.,

ε

(
t − t̂, t − t(f)

j

)
=

[
exp

(
− t − t(f)

j

τm

)

− exp

(
− t − t(f)

j

τs

)]
,

×Θ(t − t(f)
j ) , (37.17)

0 20 40 60 80 100

a) u (t) η kernel

t (ms)
0 20 40 60 80 100

b) u (t) ε kernel

t (ms)

Fig. 37.9a,b Shape of the response
kernels η and ε. (a) A spike is trig-
gered at time t = t(f) = 0, which
results in the activation of the η ker-
nel. The shape of the spike and its
after potential are modeled by this
kernel function. (b) The neuron re-
ceives an input spike at time t = 0,
which results in the activation of the
ε kernel. If no further stimulus is re-
ceived, the potential u returns to its
resting potential

where Θ(·) once more corresponds to the Heaviside
function, the two exponential functions model a positive
and a negative pulse with the corresponding decay rates,
and t(f)

j is the spike time of a pre-synaptic neuron j.
In (37.17), the first dependency of ε is neglected, which
corresponds to a special case of the model, namely the
simplified SRM. This simplified version of SRM is dis-
cussed in the next section. The time course of the ε

kernel of (37.17), is presented in Fig. 37.9a. For the
figure τs = 0.005 and τm = 0.01 were used. The imple-
mentations for the response kernels η and ε are adopted
from the study on spike timing dependent plasticity
in [37.18].

The third kernel function κ represents the linear
response of the membrane to an input current Iext. It
depends on the last firing time of the neuron t − t̂ and
the time prior to t. It is used to model the time course of
u due to external stimuli to the neuron.

A comprehensive discussion of the spike response
model and its derivatives can be found in the excellent
textbook [37.11] and also in [37.19].

Simplified Spike Response Model (SRM0)
In a simplified version of SRM, the kernels ε and κ are
replaced

ε0(s) = εij (∞, s) , (37.18)

κ0(s) = κij (∞, s) , (37.19)

which makes the kernels independent of the index j
of pre-synaptic neurons and also of the last firing
time t̂i of the post-synaptic neuron. Using simple im-
plementations of these kernel functions reduces the
computational cost significantly. Hence, this model
has been used to analyze the computational power
of spiking neurons [37.20, 21], of network synchro-
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0 50 100 150 200

a) u (t)

u rest

Spike at t̂ = 77.9

t (ms)

b) Stimulus

Fig. 37.10 Dynamics of the spike response model (SRM).
In the post-synaptic neuron, spikes change the membrane
potential described by the kernel function ε. If the mem-
brane potential crosses a threshold ϑ, a spike is triggered.
The shape of this action potential is modeled by the func-
tion η.

nization [37.22] and collective phenomena of coupled
networks [37.23].

The dynamics of the SRM0 model are presented in
Fig. 37.10. For the diagram, the ε and η kernels are de-
fined by (37.15) and (37.17), respectively. The neuron
receives a pre-synaptic stimulus in the form of several
spikes which impact the potential u according to the
response kernel ε. Due to the pre-synaptic activity, an
action potential is triggered at time t = 77.9 ms, which
results in the activation of the η kernel and the modeling
of the spike shape and the after-potential. Figure 37.10
only presents excitatory synaptic activity.

37.2.5 Thorpe Model

A simplified LIF model was formally proposed
in [37.24]. However, the general idea of the model
can be traced back to publications from as early as
1990 [37.25]. This model lacks the post-synaptic poten-
tial leakage. The spike response of a neuron depends
only on the arrival time of pre-synaptic spikes. The
importance of early spikes is boosted and affects the
post-synaptic potential more strongly than later spikes.
This concept is very interesting due to the fact that the
brain is able to compute even complex tasks quickly
and reliably. For example, for the processing of vi-
sual data the human brain requires only approximately
150 ms [37.26], see also a similar study on rapid visual

u (t)

Spikes

Time t

Stimulus

Fig. 37.11 Evolution of the post-synaptic potential (PSP) of
the Thorpe neuronal model for a given input stimulus. If
the potential reaches threshold ϑ, a spike is triggered and
the PSP is set to 0 for the rest of the simulation, even if the
neuron is still stimulated by incoming spike trains

categorization of natural and artificial objects [37.27].
Since it is known that this type of computation is partly
sequential and several parts of the brain involving mil-
lions of neurons participate in the computation, it was
argued in [37.28, 29] that each neuron has time and
energy to emit only very few spikes that can actually
contribute to the processing of the input. As a conse-
quence, few spikes per neuron are biologically sufficient
to solve a highly complex recognition task in real time.

Similar to other models, the dynamics of the Thorpe
model are described by the evolution of the post-
synaptic potential ui (t) of a neuron i as

ui (t) =

⎧
⎪⎨

⎪⎩

0 if fired
∑

j| f ( j)<t

w jim
order( j)
i else , (37.20)

where w ji is the weight of a pre-synaptic neuron j, f ( j)
is the firing time of j, and 0 < mi < 1 is a parameter
of the model, namely the modulation factor. Function
order( j) represents the rank of the spike emitted by
neuron j. For example, a rank order( j) = 0 would be
assigned if neuron j is the first among all pre-synaptic
neurons of i that emits a spike. In a similar fashion, the
spikes of all pre-synaptic neurons are ranked and then
used in the computation of ui . A neuron i fires a spike
when its potential reaches a certain threshold ϑ. After
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emitting a spike, the potential resets to ui = 0. Each
neuron is allowed to emit only a single spike at most.
The threshold ϑ = cumax is set to a fraction 0 < c < 1
of the maximum potential umax reachable for a neuron.
Figure 37.11 presents the change of the post-synaptic
potential for the Thorpe neural model if a series of input
spikes stimulates the neuron through different synapses.

These simplifications allow a very fast real-time
simulation of large networks. Due to its low com-

putational costs this model was mainly used for
studying image and speech recognition methods in-
volving thousands of connected neurons [37.30, 31].
Many studies have investigated the Thorpe model, e.g.,
for face recognition [37.32, 33]. Additional studies uti-
lizing this model are presented in Sect. 37.6, where
principles and applications of the evolving spiking
neural network architecture are discussed in the next
sections.

37.3 Neural Encoding

This section addresses a fundamental question in neu-
roscience: What is the code used by neurons to transmit
information? Is it possible for an external observer to
read and understand the message of neural activity?
Traditionally, there are two main theories about neural
encoding – pulse codes and rate codes. Both theories are
discussed below.

37.3.1 Rate Codes

The first theory assumes that the mean firing rate of
a neuron carries the most, maybe even all the informa-
tion of a transmission. These codes are referred to as
rate codes and have inspired the classical perceptron ap-
proaches. The mean firing rate v is usually understood
as the ratio of the average number of spikes nsp observed
over a specific time interval T , and T itself

v = nsp

T
. (37.21)

This concept has been especially successful in the con-
text of sensory or motor neural system, cf. e.g., the
pioneering work by Adrian on the direct relationship
between the firing rate of stretch receptor neurons and
the applied force in the muscles of frog legs [37.34].
Nevertheless, the idea of a mean firing rate has been
repeated CE

5 [37.35]. The main argument is the compa-

Population
of neurons

Postsynaptic
neuron

Δt

Δt
1

N
nact (t, t + Δt)Activity  A =

1

2

3

...

N

Fig. 37.12 A neuron receives input
spikes from a population of pre-
synaptic neurons producing a certain
activity A. The activity is defined as
the fraction of neurons being active
within a short interval [t, t +Δt], di-
vided by the population size N and
the time period Δt. (After [37.11])

rably slow transmission of information from one neuron
to another, since each neuron has to integrate the spike
activity of pre-synaptic neurons at least over a time T .
Especially, the extremely short response times of the
brain for certain stimuli, cannot be explained by the
temporal averaging of spikes. For example, in [37.26]
it was shown that the human brain can recognize a vi-
sual stimulus in approximately 150 ms. It is known that
a moderate number of neural layers are involved in
the processing of visual stimuli. If every layer had to
wait a period T to receive the information from the
previous layer, the recognition time would be much
longer.

However, there is also another interpretation for the
concept of the mean firing rate. It is defined as the av-
erage spike activity over a population of neurons. The
principle of this interpretation is explained in Fig. 37.12.
A post-synaptic neuron receives stimulating inputs in
the form of spikes emitted by a population of pre-
synaptic neurons. This population produces a certain
spike activity A, which is defined as the fraction of
neurons being active within a short interval [t, t +Δt]

A = 1

Δt

nact(t, t +Δt)

N
, (37.22)

where nact(t, t +Δt) denotes the number of active neu-
rons in interval [t, t +Δt], and N is the total number

CE
5 Please check that this is the intended meaning.
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neuron in the population. The activity of a population
may vary rapidly and thus allow fast responses of the
neurons to changing stimuli [37.36, 37].

37.3.2 Pulse Codes

The second type of neural encoding is referred to as
a spike or pulse code. These codes assume the precise
spike time as the carrier of information between neu-
rons. Experimental evidence for temporal correlations
between spikes has been given through computer sim-
ulations [37.38], where integrate-and-fire models are
investigated, but also through biological experiments,
cf. the electrophysiological recordings and staining pro-
cedures in [37.39]; see also the in vivo measurements
described in [37.40] in which spatio–temporal patterns
of neuronal activity are analyzed in order to predict the
behavior responses of rats.

A pulse code based on the timing of the first spike
after a reference signal was discussed in [37.26]. This
encoding is called time-to-first-spike and was inspired

by the visual processing of the human eye. It was argued
that each neuron has time to emit only a few spikes that
can contribute to the overall processing of a stimulus.
Indeed, it was also shown in [37.41] that a new stim-
ulus is processed in the first 20–50 ms after its onset.
Thus, earlier spikes carry most information about the
stimulus. A specific neural model, namely the Thorpe
model that boosts the importance of early spikes, was
discussed already in Sect. 37.2.5.

Other pulse codes consider correlation and syn-
chrony to be important. Neurons that represent a similar
concept, object, or label are labeled by firing syn-
chronously [37.42]. More generally, any precise spatio–
temporal pulse pattern may be potentially meaningful
and encode a particular information. Neurons that fire
with a certain relative time delay may signify a certain
stimulus.

As a practical example, the so-called rank order
population encoding is presented in Sect. 37.6.1. Addi-
tional information about neural encoding in general can
be found in the book by Rieke et al. [37.35].

37.4 Learning in SNN

This section presents some typical learning methods
in the context of spiking neurons. A variety of prob-
lems impair the development of learning procedures
for SNN. The explicit time dependence results in
asynchronous information processing that commonly
requires complex software and/or hardware implemen-
tations to simulate these neural networks. Additional
difficulties are added by the fact that recurrent network
topologies are commonly used in SNN and thus the for-
mulation of a straightforward learning method, such as
back-propagation for MLP, is not possible.

Similar to traditional neural networks, three differ-
ent learning paradigms can be distinguished in SNN,
which are referred to as unsupervised, reinforcement,
and supervised learning. Reinforcement learning in
SNN is probably the least common among the three.
Some algorithms have been successfully applied in
robotic applications [37.43], but were also theoretically
analyzed in [37.44–46]. Unsupervised learning in the
form of Hebbian learning is the most biologically re-
alistic learning scenario. The so-called spike-timing de-
pendent plasticity (STDP) belongs to this category and
is discussed in the next section. Supervised techniques
impose a certain input–output mapping on the network
which is essential for practical applications of SNN.

Two methods are discussed in greater detail in the next
sections. The learning algorithm employed in the eSNN
architecture is discussed separately in Sect. 37.6.2. An
excellent comparison of supervised learning methods
developed for SNN can be found in [37.47].

37.4.1 STDP – Spike-Timing Dependent
Plasticity

Spike-timing dependent plasticity is inspired by the ex-
periments of Hebb published in his famous book The
Organization of Behavior [37.48]. His essential postu-
late is often referred to as Hebb’s law:

When an axon of cell A is near enough to excite cell
B and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased.

First experimental evidence that supports Hebb’s postu-
late was given 20 years later in [37.49, 50]. Today, it is
known that the change of synaptic efficacy in the brain
is correlated to the timing of pre- and post-synaptic ac-
tivity of a neuron [37.51–53]. Whenever the efficacy of
a synapse is strengthened or weakened, we speak of
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Fig. 37.13 STDP learning window W as function of the
time difference tpre − tpost of pre- and post-synaptic spike
times. The function presented is based on (37.23) using
the following parameter setting: A+ = 0.9, A− = −0.75,
τ+ = 20, and τ− = 5

long-term potentiation (LTP) or long-term depression
(LTD), respectively. STDP is described by a function
W(tpre − tpost) that determines the fractional change of
the synaptic weight in dependence of the difference be-
tween the arrival time tpre of a pre-synaptic spike and
the time tpost of an action potential emitted by the neu-
ron. Function W is also known as the STDP window.
Typical approximations of W are, e.g.,

W(tpre − tpost)

=

⎧
⎪⎪⎨

⎪⎪⎩

A+ exp

(
tpre − tpost

τ+

)
if tpre < tpost ,

A− exp

(
− tpre − tpost

τ+

)
if tpre > tpost ,

(37.23)

where parameters τ+ and τ− determine the temporal
range of the pre- and post-synaptic time interval, while
A+ and A− denote the maximum fractions of synaptic
modification, if tpre − tpost is close to zero. Figure 37.13
presents the STDP window W according to (37.23).

The parameters for A+, A−, τ+, and τ− are ad-
justed according to the particular neuron to be modeled.
The window W is usually temporally asymmetric, i. e.,
A+ �= A− and τ+ �= τ−. However, there are also some
exceptions, e.g., synapses of layer 4 spiny stellate neu-
rons in the rat barrel cortex appear to have a symmetric
window [37.54].

A study investigated the dynamics of synaptic prun-
ing as a consequence of the STDP learning rule [37.55].

Synaptic pruning is a general feature of mammalian
brain maturation and refines the embryonic nervous sys-
tem by removing inappropriate synaptic connections
between neurons, while preserving appropriate ones.
Later studies extended this work by including apoptosis
(genetically programmed cell death) into the analy-
sis [37.56], and the identification of spatio–temporal
patterns in the pruned network indicating the emergence
of cell assemblies [37.57].

More information on STDP can be found in the
excellent review on the matter in [37.58–61].

37.4.2 Spike-Prop

Traditional neural networks, like the multi-layer per-
ceptron, usually employ some form of gradient based
descent, i. e., error back-propagation, to modify synap-
tic weights in order to impose a certain input-output
mapping on the network. However, the topological re-
currence of SNN and their explicit time dependence do
not allow a straightforward evaluation of the gradient in
the network. Special assumptions need to be made to
develop a version of back-propagation appropriate for
spiking neurons.

In [37.62, 63] a back-propagation algorithm called
spike-prop is proposed, which is suitable for training
SNN. It is derived from the spike-response model dis-
cussed in Sect. 37.2.4. The aim of the method is to
learn a set of desired firing times t d

j of all output neu-
rons j for a given input pattern presented to the network.
Spike-prop minimizes the error E defined as the squared
difference between all network output times tout

j and
desired output times t d

j

E = 1

2

∑

j

(
tout

j − t d
j

)2
. (37.24)

The error is minimized with respect to the weights wk
ij

of each synaptic input

Δwk
ij = −η

dE

dwk
ij

, (37.25)

with η defining the learning rate of the update step.
A limitation of the algorithm is given by the re-

quirement that each neuron is allowed to fire only once,
which is similar to the limitations of the Thorpe neu-
ral model presented in Sect. 37.2.5. This simplification
allows the error function defined in (37.24) to depend
entirely on the difference between actual and desired
spike time. Thus, only time-to-first-spike encoding is
suitable in combination with spike-prop.
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Fig. 37.14 Principle of the liquid state machine (LSM).
The liquid transforms inputs u into a liquid state x, which
in turn is mapped by a (linear) readout function f into the
output v of the network. (After [37.67])

The algorithm was modified in a number of studies.
In [37.64] a momentum term was included in the up-
date of the weights, while [37.65] extended the method
to learn additional neural parameters, such as synap-
tic delays, time constants, and neuron thresholds. An
extension towards recurrent network topologies was
presented in [37.66].

37.4.3 Liquid State Machine (LSM)

A very different approach to neural learning was pro-
posed with the liquid state machine (LSM) introduced
in [37.69]. The method is a specific form of reservoir

Input nk
in (i) Teacher nd(i)

Learner ni
l

W d(sd)

sd

wki

wki

t

nk
in (i)

nd(i)

W l (sl)

sl

wki

t

nk
in (i)
nl (i)

Fig. 37.15 Schematic illustration of the remote supervised method (ReSuMe). The synaptic change depends on the cor-
relation of spike activities between input, teaching, and learning neurons. Spikes emitted by neuron input nin

k (i) followed
by a spike of the teacher neuron n d(i) leads to an increase of synaptic weight wki . The value of wki is decreased, if nin

k (i)
spikes before the learning neuron nl

i is activated. The amplitude of the synaptic change is determined by two functions
W d(s d) and W l(sl), where s d is the temporal difference between the spike times of teacher neuron and input neuron,
while sl describes the difference between the spike times of learning neuron and input neuron. (After [37.68])

computing [37.70], that constructs a recurrent network
of spiking neurons, for which all parameters of the
network, i. e., synaptic weights, connectivity, delays,
neural parameters, are randomly chosen and fixed dur-
ing simulation. Such a network is also referred to as
a liquid. If excited by an input stimulus, the liquid
exhibits very complex non-linear dynamics that are
expected to reflect the inherent information of the pre-
sented stimulus. The response of the network can be
interpreted by a learning algorithm.

Figure 37.14 illustrates the principle of the LSM ap-
proach. As a first step in the general implementation
of LSM a suitable liquid is chosen. This step deter-
mines, for example, the employed neural model along
with its parameter configuration, as well as the con-
nectivity strategy of the neurons, network size, and
other network-related parameters. After creating the li-
quid, so-called liquid states x(t) can be recorded at
various time points in response to numerous differ-
ent (training) inputs u(t). Finally, a supervised learning
algorithm is applied to a set of training examples
of the form (x(t), v(t)) to train a readout function
f , such that the actual outputs f (x(t)) are close
to v(t).

It was argued in [37.67] that LSM has universal
computational power. A very appealing feature of the
applied training method, i. e., the readout function, is its
simplicity, since only a single layer of weights is ac-
tually modified, for which a linear training method is
sufficient.
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A specific implementation of the readout, the so-
called remote supervised method (ReSuMe) introduced
in [37.68], is presented here. The goal of ReSuMe is
to impose a desired input–output spike pattern on an
SNN, i. e., to produce target spike trains in response to
a certain input stimulus. The method is based on the
already presented STDP learning window as described
in Sect. 37.4.1 for details, in which two opposite update
rules for the synaptic weights are balanced. Additional
teacher neurons are defined for each synapse, which re-
motely supervise the evolution of its synaptic weight.
The teacher neuron is not explicitly connected to the
network, but generates a reference spike signal which
is used to update the connection weight in an STDP-
like fashion. The post-synaptic neuron, whose activity
is influenced by the weight update, is called the learning
neuron.

Figure 37.15 illustrates the principle of ReSuMe.
Let nl

i denote the learning neuron which receives spike

sequences from pre-synaptic neuron nin
k , (i), the corre-

sponding synaptic weight being wki , and neuron n d(i)
being the teacher for weight wki . If input neuron nin

k , (i)
emits a spike that is followed by a spike of the teacher
neuron nd(i), the synaptic weight wki is increased. On
the other hand, if nin

k , (i) spikes before the learning neu-
ron nl

i is activated, the synaptic weight is decreased.
The amplitude of the synaptic change is determined
by two functions Wd(sd) and Wl(sl), where sd is the
temporal difference between the spike times of teacher
neuron and input neuron, while sl describes the dif-
ference between the spike times of learning neuron
and input neuron. Thus, the precise time difference
of spiking activity defines the strength of the synaptic
change.

A few studies on LSM can be found in the overview
paper in [37.71] and the specific case study for iso-
lated word recognition in [37.72]. More information on
ReSuMe is available in [37.73–75].

37.5 Applications of SNN

Traditionally, SNN have been applied in the area of neu-
roscience to better understand brain functions and prin-
ciples, the work by Hodgkin and Huxley [37.3] being
among the pioneering studies in the field. A number of
main directions for understanding the functioning of the
nervous system are given in [37.76]. Here it is argued
that a comprehensive knowledge about the anatomy of
individual neurons and classes of cells, pathways, nu-
clei, and higher levels of organization is very important,
along with detailed information about the pharma-
cology of ion channels, transmitters, modulators, and
receptors. Furthermore, it is crucial to understand
the biochemistry and molecular biology of enzymes,
growth factors, and genes that participate in brain de-
velopment and maintenance, perception, and behavior,
learning, and diseases. A range of software systems
for analyzing biologically plausible neural models ex-
ist, NEURON [37.77] and GENESIS [37.78], being the

most prominent ones. Modeling and simulation are fun-
damental for the understanding of neural processes.

A number of large-scale studies have been under-
taken recently to understand the complex behavior of
ensembles of spiking [37.17, 79]. The review presented
in [37.80] discusses challenges for implementations of
spiking neural networks on FPGAs in the context of
large-scale experiments.

SNN are also applied in many real-world applica-
tions. Notable progress has been made in areas such
as speech recognition [37.72], learning rules [37.63],
associative memory [37.81], and function approxima-
tion [37.82]. Other applications include biologically
more realistic controllers for autonomous robots; see
[37.83–85] for some interesting examples in this re-
search area.

In Sect. 37.6 we focus on a few applications of the
evolving spiking neural network architecture.

37.6 Evolving Spiking Neural Network Architecture

Based on [37.86], an evolving spiking neural network
architecture (eSNN) was proposed in [37.87], which
was initially designed as a visual pattern recognition
system. Other studies have utilized eSNN as a general

classification method, e.g., in the context of classifying
water and wine samples [37.88]. The method is based
on the already discussed Thorpe neural model, in which
the importance of early spikes (after the onset of a cer-
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tain stimulus) is boosted (Sect. 37.2.5). Synaptic plastic-
ity is employed by a fast supervised one-pass learning
algorithm that is explained as part of this section.

In order to classify real-valued data sets, each data
sample, i. e., a vector of real-valued elements, is mapped
into a sequence of spikes using a certain neural encod-
ing technique. In the context of eSNN, the so-called
rank order population encoding is employed, but other
encoding may be suitable as well. The topology of
eSNN is strictly feed-forward and organized in several
layers. Weight modification only occurs on the connec-
tions between the neurons of the output layer and the
neurons of either the hidden layer or the input layer.
The weight modification occurs between the neurons
of the output layer and the neurons of either hidden or
input layer, only.

In Sect. 37.6.1 the encoding principle used in eSNN
is presented, followed by the description of the one-
pass learning method and the overall functioning of the
eSNN method. Finally, a variety of applications based
on the eSNN architecture are reviewed and summarized.

37.6.1 Rank Order Population Encoding

Rank order population encoding is an extension of the
rank order encoding introduced in [37.24]. It allows the
mapping of vectors of real-valued elements into a se-
quence of spikes. An implementation based on arrays

Receptive fields
Input value

–2 –1 0 1 2

a)  Excitation

Input interval

1
0.8
0.6
0.4
0.2

0

0 1 2 3 4

b)  Firing time

Neuron ID

1
0.8
0.6
0.4
0.2

0

Fig. 37.16a,b Population encoding based on Gaussian receptive
fields. (a) For an input value v = 0.75 (thick straight line in top
figure) the intersection points with each Gaussian is computed (tri-
angles), which are in turn translated into spike time delays (b) left
TS7

of receptive fields was first CE
6 described in [37.63].

Receptive fields allow the encoding of continuous val-
ues by using a collection of neurons with overlapping
sensitivity profiles. Each input variable is encoded in-
dependently by a group of M one-dimensional receptive
fields. For a variable n an interval [In

min, In
max] is defined.

The Gaussian receptive field of neuron i is given by its
center μi

μi = In
min + 2i −3

2

In
max − In

min

M −2
(37.26)

and width σ is

σ = 1

β

In
max − In

min

M −2
, (37.27)

with 1 ≤ β ≤ 2. Parameter β directly controls the width
of each Gaussian receptive field. Figure 37.16 depicts
an example encoding of a single variable. For the di-
agram, β = 2 was used, the input interval [In

min, In
max]

was set to [−1.5, 1.5], and M = 5 receptive fields were
used.

More information on rank order coding strategies
can be found in [37.89] and the accompanying arti-
cle [37.33]. Very interesting is also the review on rapid
spike-based processing strategies in the context of im-
age recognition presented in [37.90], where most work
on the Thorpe neural model and rank order coding is
summarized. Rank order coding was also explored for
speech recognition problems [37.91] and is a core part
of the eSNN architecture.

37.6.2 One-Pass Learning

The aim of the learning method is to create output neu-
rons, each of them labeled with a certain class label
l ∈ L . The number and value of class labels depends
on the classification problem to solve, i. e., L corre-
sponds to the set of class labels of the given data set.
After presenting a certain input sample to the network,
the corresponding spike train is propagated through the
SNN, which may result in the firing of certain out-
put neurons. It is also possible that no output neuron
is activated and the network remains silent. In this
case, the classification result is undetermined. If one
or more output neurons have emitted a spike, the neu-
ron with the shortest response time among all activated
output neurons is determined, i. e., the output neuron
with the earliest spike time. The label of this neuron
represents the classification result for the input sample
presented.
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Algorithm 37.1 Training an evolving spiking neural
network
Require: ml , sl , cl for a class label l ∈ L
1: initialize neuron repository Rl = {}
2: for all samples X(i) belonging to class l do
3: w

(i)
j ← (ml)order( j), ∀ j | j pre-synaptic

neuron of i
4: u(i)

max ← ∑
j w

(i)
j (ml)order( j)

5: ϑ(i) ← clu
(i)
max

6: if min(d(w(i), w(k))) < sl, w(k) ∈ Rl
then

7: w(k) ← merge w(i) and w(k) according
to (37.31)

8: ϑ(k) ← merge ϑ(i) and ϑ(k) according
to (37.32)

9: else
10: Rl ← Rl ∪{w(i)}
11: end if
12: end for

The learning algorithm successively creates a repos-
itory of trained output neurons during the presentation
of training samples. For each class label l ∈ L an indi-
vidual repository is evolved. The procedure is described
in detail in Algorithm 37.1. For each training sample i
with class label l ∈ L a new output neuron is created
and fully connected to the previous layer of neurons re-
sulting in a real-valued weight vector w(i), with w

(i)
j ∈ R

denoting the connection between the pre-synaptic neu-
ron j and the created neuron i. In the next step, the input
spikes are propagated through the network and the value
of weight w

(i)
j is computed according to the order of

spike transmission through a synapse j, see line 6 in
Algorithm 37.1

w
(i)
j = (ml)

order( j)∀ j| j pre-synaptic neuron of i .

(37.28)

Parameter ml is the modulation factor of the Thorpe
neural model. Differently labeled output neurons may
have different modulation factors ml . Function order( j)
represents the rank of the spike emitted by neuron j.
For example, a rank order( j) = 0 would be assigned, if
neuron j is the first among all pre-synaptic neurons of
i that emits a spike. In a similar fashion the spikes of
all pre-synaptic neurons are ranked and then used in the
computation of the weights.

The firing threshold ϑ(i) of the created neuron i
is defined as the fraction cl ∈ R, 0 < cl < 1, of the
maximal possible potential u(i)

max, see lines 4 and 5 in

Algorithm 37.1,

ϑ(i) = clu
(i)
max , (37.29)

u(i)
max =

∑

j

w
(i)
j (ml)

order( j) . (37.30)

The fraction cl is a parameter of the model and for each
class label l ∈ L a different fraction can be specified.

The weight vector of the trained neuron is then
compared the ones of neurons that are already stored
neurons in the repository, cf. line 6 in Algorithm 37.1. If
the minimal Euclidean distance between the weight vec-
tors of the neuron i and an existing neuron k is smaller
than a specified similarity threshold sl , the two neurons
are considered too similar and both the firing thresholds
and the weight vectors are merged according to

w
(k)
j ← w

(i)
j + Nw

(k)
j

1+ N
,

∀ j | j pre-synaptic neuron of i (37.31)

ϑ(k) ← ϑ(i) + Nϑ(k)

1+ N
. (37.32)

Integer N denotes the number of samples previously
used to update neuron k. The merging is implemented
as the (running) average of the connection weights, and
the (running) average of the two firing thresholds. After
the merging, the trained neuron i is discarded and the
next sample processed. If no other neuron in the repos-
itory is similar to the trained neuron i, the neuron i is
added to the repository as a new output neuron.

Figure 37.17 depicts the eSNN architecture. Due to
the incremental evolution of output neurons, it is pos-
sible to accumulate knowledge as it becomes available.
Hence, a trained network is able to learn new data with-
out the need for re-training on already learnt samples.
Real-world applications of the eSNN architecture are
discussed in the next section.

37.6.3 Applications

The eSNN architecture is used in a variety of applica-
tions that are described and summarized here.

Visual Pattern Recognition
Among the earliest applications of eSNN is the visual
pattern recognition system presented in [37.87], which
extends the work of [37.92, 93] by including the on-
line learning technique described before. In [37.87, 94]
the method was studied on an image data set consist-
ing of 400 faces of 40 different persons. The task here
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Fig. 37.17 Schematic illustration of the evolving spiking
neural network architecture (eSNN). Real-valued vector el-
ements are mapped into the time domain using rank order
population encoding based on Gaussian receptive fields. As
a consequence of this transformation input neurons emit
spikes at pre-defined firing times, invoking the one-pass
learning algorithm of the eSNN. The learning iteratively
creates repositories of output neurons, one repository for
each class. Here a two-class problem is presented. Due to
the evolving nature of the network, it is possible to ac-
cumulate knowledge as it becomes available, without the
requirement of re-training with already learnt samples

was to predict the class labels of presented images cor-
rectly. The system was trained on a subset of the data
and then tested on the remaining samples of the data.
Classification results were similar to [37.92, 93] with
the additional advantages of the novel on-line learning
method.

In a later study another processing layer was added
to the system, which allows efficient multi-view visual
pattern recognition [37.95]. The additional layer accu-
mulates information over several different views of an
image in order to reach a final decision about the as-
sociated class label of the frames. Thus, it is possible
to perform an efficient on-line person authentication
through the presentation of a short video clip to the sys-
tem, although the audio information was ignored in this
study.

The main principle of this image recognition
method is briefly outlined here. The neural network
is composed of four layers of Thorpe neurons, each
of them grouping a set of neurons into several two-
dimensional maps, so-called neural maps. Information
in this network is propagated in a feed-forward manner,
i. e., no recurrent connections exist. An input frame in
the form of a gray-scale image is fed into the first neu-
ral layer (L1), each pixel of the image corresponding to

one neuron in a neural map of L1. Several neural maps
may exist in this layer. The map consists of on and off
neurons that are responsible for the enhancement of the
high contrast parts of the image. Each map is configured
differently and thus is sensitive to different gray scales
in the image. The output of this layer is transformed
into the spike domain using rank order encoding as de-
scribed in [37.24]. As a consequence of this encoding,
pixels with higher contrast are prioritized in the neural
processing.

The second layer, denoted L2, consists of orienta-
tion maps. Each map is selective for different directions,
e.g., 0, 45, . . . , 315◦, and is implemented by appropri-
ately parameterized Gabor functions. It is noted that the
first two layers are passive filters that are not subject to
any learning process. In the third layer, L3, the learning
occurs using the one-pass learning method described in
Sect. 37.6.2. Here neural maps are created and merged
according to the rules of the learning algorithm. Fi-
nally, the fourth layer L4, consists of a single neuron
for each output class, which accumulates opinions about
the class label of a certain sequence of input frames.
The weights between L3 and L4 are fixed to a constant
value, usually 1, and are not subject to learning. The first
L4 neuron that is activated by the stimuli presented de-
termines the classification result for the input. After the
activation of an L4 neuron the system stops.

Experimental evidence about the suitability of this
pattern recognition system is provided in [37.95]
along with a comparison to other typical classification
methods.

Auditory Pattern Recognition
A similar network, but in an entirely different context,
was investigated in [37.96], where a text-independent
speaker authentication system is presented. The classifi-
cation task in this work consisted of the correct labeling
of audio streams presented to the system.

Speech signals are split into temporal frames, each
containing a signal segment over a short time period.
The frames are first pre-processed using the mel-
frequency cepstral coefficients (MFCCs) [37.97] and
then used to invoke the eSNN. The MFCC frame is
transformed into the spike domain using rank order en-
coding [37.24] and the resulting stimulus is propagated
to the first layer of neurons. This layer, denoted L1,
contains two neural ensembles representing the speaker
and the background model, respectively. While the for-
mer model is trained on the voice of a certain speaker,
the latter is trained on the background noise of the au-
dio stream. This system also collects opinions about the
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audio-visual pattern recognition
ecological modeling
multi-layer perceptron (MLP)
taste recognition

class label of the presented sequence of input frames,
which is implemented by the second layer of the net-
work. Layer L2 consists of only two neurons, each of
which accumulates information about whether a given
frame corresponds to a certain speaker or to the back-
ground noise. Whenever an L2 neuron is activated, the
simulation of the network stops and the classification
output is presented.

Audio-Visual Pattern Recognition
The two recognition systems presented above were suc-
cessfully combined, forming an audio-visual pattern
recognition method. Both systems are trained individ-
ually, but their output is propagated to an additional
supra-modal layer. The supra-modal layer integrates in-
coming sensory information from individual modalities
and cross-modal connections enable the influence of
one modality upon the other. A detailed discussion of
this system along with experimental evidence is given
in [37.98, 99].

Case Study on Ecological Modeling
In [37.100, 101], the eSNN was applied on a real world
data set in the context of an ecological modeling prob-
lem. For many invertebrate species little is known about
their response to environmental variables over large spa-
tial scales. That knowledge is important since it can
help to identify critical locations in which a species
that has the potential to cause great environmental harm
might establish a new damaging population. The usual
approach to determine the importance of a range of
environmental variables that explain the global distri-
bution of a species is to train or fit a model to its known
distribution using environmental parameters measured
in areas where the species is present and where it is
absent.

Meteorological data that comprised 68 monthly and
seasonal temperature, rainfall, and soil moisture vari-
ables for 206 global geographic sites were compiled
from published records. These variables were correlated
to global locations where the Mediterranean fruit-fly
(Ceratitis capitata), a serious invasive species and fruit
pest, was recorded at the time of the study, as either
present or absent [37.102]. Motivated by inadequate
results [37.103–105] used a different method, namely
the multi-layer perceptron (MLP); this study aimed to
identify important features relevant for predicting the
presence/absence of this insect species. The results ob-
tained may also be of importance to evaluate the risk
of invasion of certain species into specific geographical
regions.

Taste Recognition
The last application of eSNN being discussed here
investigates the use of SNN for taste recognition in
a gustatory model. The classification performance of
eSNN was experimentally explored based on water and
wine samples collected from [37.106, 107]. The topol-
ogy of the model consists of two layers. The first layer
receives an input stimulus obtained from the mapping of
a real-valued data sample into spike trains using a rank
order population encoding (Sect. 37.6.1) The weights
from the first neural layer are subject to training accord-
ing to the already discussed one-pass learning method.
Finally, the output of the second neural layer determines
the class label of the presented input stimulus.

The method was investigated in a number of sce-
narios, where the size of the data sets and the number
of class labels was varied. Generally, eSNN reported
promising results on both large and small data sets,
which has motivated an FPGA hardware implementa-
tion of the system [37.108].
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