189 research outputs found

    Signature of deep mantle melting in South Iceland olivine

    Get PDF
    We present new high-precision major and trace element data on olivine macrocrysts from various volcano-tectonic settings in Iceland and use these data as a proxy for mantle mode and melting conditions. Within individual sampling sites examined (seven lavas and one tephra) olivine-dominated fractional crystallization, magma mixing and diffusive re-equilibration control observed variability in olivine composition. High-pressure fractional crystallization of clinopyroxene may have lowered Ca and increased Fe/Mn in one olivine population and subsolidus diffusion of Ni and Fe-Mg affected the mantle-derived Ni/Fo ratio in some compositionally zoned olivine macrocrysts. Interestingly, magmas erupted at the southern tip of the Eastern Volcanic Zone (SEVZ), South Iceland, have olivines with elevated Ni and low Mn and Ca contents compared to olivines from elsewhere in Iceland, and some of the SEVZ olivines have relatively low Sc and V and high Cr, Ti, Zn, Cu and Li in comparison to depleted Iceland rift tholeiite. In these olivines, the high Ni and low Mn indicate relatively deep melting (P-final>1.4GPa,similar to 45km), Sc, Ti and V are compatible with low-degree melts of lherzolite mantle, and elevated Zn may suggest modal (low-olivine) or geochemical (high Zn) enrichment in the source. The SEVZ olivine macrocrysts probably crystallized from magmas derived from olivine-bearing but relatively deep, enriched and fertile parts of the sub-Icelandic mantle, and indicate swift ascent of magma through the SEVZ lithosphere.Peer reviewe

    Formation of segregation structures in Hafnarhraun pāhoehoe lobe, SW Iceland: a window into crystal–melt separation in basaltic magma

    Get PDF
    Publisher's version (Ăștgefin grein).To gain insights into crystal–melt separation processes during basalt differentiation, we have studied an 8-m-thick pāhoehoe lava lobe from the Hafnarhraun lava flow field in SW Iceland. The lobe has abundant melt segregations, porous cylindrical and sheet-like structures, generally interpreted as separated residual melts of a lava lobe. We divide these melt segregations into three types based on morphology and composition: vesicle cylinders (VC), type 1 horizontal vesicle sheets (HVS1), and type 2 horizontal vesicle sheets (HVS2). Remarkably, the studied VC are not simple residual melts generated by fractional crystallization, but their composition points to removal of plagioclase from the parental lava. HVS1 resemble VC, but have fractionated more olivine (ol) + plagioclase (plg) ± augite and have lost most, if not all, of their olivine phenocrysts. HVS2 are Fe-rich and evolved, corresponding to residual melts after 50–60% fractional crystallization of the lobe. We suggest that the Hafnarhraun VC formed in a two-stage process. Firstly, VC forming residual melt and vapor detached as rising diapirs from ol+plg+melt+vapor mush near the lava base, and later, these VC diapirs accumulated ol phenocrysts and minor plg microphenocrysts in the lava core. HVS1 represent accumulations of VC to the viscous base of the solidifying upper crust of the lobe, and HVS2 formed as evolved vapor-saturated residual melts seeped into voids within the upper crust. Such vapor-aided differentiation, here documented for the Hafnarhraun lava, may also apply to shallow crustal magma storage zones, contributing to the formation of evolved basalts.The Nordic Volcanological Center funded this work 2015–2017. We thank Robert A. Askew and LeĂł KristjĂĄnsson for the aid in sampling, Atli Hjartarson and GuĂ°mundur H. GuĂ°finnsson for the help in sample preparation and microprobe analyses, and Richard J. Brown for the editorial handling. Comments from Kaisa NikkilĂ€, Scott Rowland, and anonymous reviewer significantly improved the manuscript. Funding information: Open access funding provided by University of Helsinki including Helsinki University Central Hospital.Peer Reviewe

    Mid-crustal storage and crystallization of Eyjafjallajokull ankaramites, South Iceland

    Get PDF
    Our understanding of the long-term intrusive and eruptive behaviour of volcanic systems is hampered by a relatively short period of direct observation. To probe the conditions of crustal magma storage below South Iceland, we have analysed compositions of minerals, mineral zoning patterns, and melt inclusions from two Eyjafjallajokull ankaramites located at Brattaskjol and Hvammsmuli. These two units are rich in compositionally diverse macrocrysts, including the most magnesian olivine (Fo(88)(-)(90)) and clinopyroxene (Mg#(cpx)( )89.8) known from Eyjafjallajokull. Olivine-hosted spinel inclusions have high Cr# (spl )(52-80) and TiO2 (1-3 wt%) and low Al2O3 (8-22 wt%) compared to typical Icelandic chromian spinel. The spinel-olivine oxybarometer implies a moderate oxygen fugacity of Delta logFMQ 0-0.5 at the time of crystallization, and clinopyroxene-liquid thermobarometry crystallization at mid-crustal pressures (1.7-4.2 kbar, 3.0+1.4 kbar on average) at 1120-1195 degrees C. Liquid-only thermometry for melt inclusions with Mg#(melt) 56.1-68.5 and olivine-liquid thermometry for olivine macrocrysts with Fo(80.7-88.9) yield crystallization temperatures of 1155-1222 degrees C and 1136-1213 degrees C, respectively. Diffusion modelling of compositional zonations in the Brattaskjol olivine grains imply that the Brattaskjol macrocusts were mobilized and transported to the surface from their mid-crustal storage within a few weeks (at most in 9-37 days). Trends in clinopyroxene macrocryst compositions and the scarcity of plagioclase indicate that the mid-crustal cotectic assemblage was olivine and clinopyroxene, with plagioclase joining the fractionating mineral assemblage later. In all, the crystal cargoes in the Brattaskjol and Hvammsmtili ankaramites are composed of agitated wehrlitic or plagioclase wehrlitic crystal mushes that crystallized over a large temperature interval at mid-crustal depths.Peer reviewe

    Insulation effects of Icelandic dust and volcanic ash on snow and ice

    Get PDF
    In the Arctic region, Iceland is an important source of dust due to ash production from volcanic eruptions. In addition, dust is resuspended from the surface into the atmosphere as several dust storms occur each year. During volcanic eruptions and dust storms, material is deposited on the glaciers where it influences their energy balance. The effects of deposited volcanic ash on ice and snow melt were examined using laboratory and outdoor experiments. These experiments were made during the snow melt period using two different ash grain sizes (1 phi and 3.5 phi) from the Eyjafjallajokull 2010 eruption, collected on the glacier. Different amounts of ash were deposited on snow or ice, after which the snow properties and melt were measured. The results show that a thin ash layer increases the snow and ice melt but an ash layer exceeding a certain critical thickness caused insulation. Ash with 1 phi in grain size insulated the ice below at a thickness of 9-15 mm. For the 3.5 phi grain size, the insulation thickness is 13 mm. The maximum melt occurred at a thickness of 1 mm for the 1 phi and only 1-2 mm for 3.5 phi ash. A map of dust concentrations on Vatnajokull that represents the dust deposition during the summer of 2013 is presented with concentrations ranging from 0.2 up to 16.6 g m(-2).Peer reviewe

    Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland

    Get PDF
    The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 ”m). At least 7·1010 kg (70 Tg) was very fine ash (<28 ”m), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka GrĂ­msvötn tephra series (i.e. Saksunarvatn ash) at Lake HvĂ­tĂĄrvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the GrĂ­msvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-

    Direction of the oblique medial malleolar osteotomy for exposure of the talus

    Get PDF
    A medial malleolar osteotomy is often indicated for operative exposure of posteromedial osteochondral defects and fractures of the talus. To obtain a congruent joint surface after refixation, the oblique osteotomy should be directed perpendicularly to the articular surface of the tibia at the intersection between the tibial plafond and medial malleolus. The purpose of this study was to determine this perpendicular direction in relation to the longitudinal tibial axis for use during surgery. Using anteroposterior mortise radiographs and coronal computed tomography (CT) scans of 46 ankles (45 patients) with an osteochondral lesion of the talus, two observers independently measured the intersection angle between the tibial plafond and medial malleolus. The bisector of this angle indicated the osteotomy perpendicular to the tibial articular surface. This osteotomy was measured relative to the longitudinal tibial axis on radiographs. Intraclass correlation coefficients (ICC) were calculated to assess reliability. The mean osteotomy was 57.2 ± 3.2° relative to the tibial plafond on radiographs and 56.5 ± 2.8 on CT scans. This osteotomy corresponded to 30.4 ± 3.7° relative to the longitudinal tibial axis. The intraobserver (ICC, 0.90-0.93) and interobserver (ICC, 0.65-0.91) reliability of these measurements were good to excellent. A medial malleolar osteotomy directed at a mean 30° relative to the tibial axis enters the joint perpendicularly to the tibial cartilage, and will likely result in a congruent joint surface after reductio
    • 

    corecore