35 research outputs found

    Covariant representations of the relativistic Brueckner T-matrix and the nuclear matter problem

    Get PDF
    We investigate nuclear matter properties in the relativistic Brueckner approach. The in-medium on-shell T-matrix is represented covariantly by five Lorentz invariant amplitudes from which we deduce directly the nucleon self-energy. We discuss the ambiguities of this approach and the failure of previously used covariant representations in reproducing the nucleon self-energies on the Hartree-Fock level. To enforce correct Hartree-Fock results we develop a subtraction scheme which treats the bare nucleon-nucleon potential exactly in accordance to the different types of meson exchanges. For the remaining ladder kernel, which contains the higher order correlations, we employ then two different covariant representations in order to study the uncertainty inherent in the approach. The nuclear matter bulk properties are only slightly sensitive on the explicit representation used for the kernel. However, we obtain new Coester lines for the various Bonn potentials which are shifted towards the empirical region of saturation. In addition the nuclear equation-of-state turns out to be significantly softer in the new approach.Comment: 39 pages Latex using Elsevier style, 16 PS figure

    Kinematical and nonlocality effects on the nonmesonic weak hypernuclear decay

    Full text link
    We derive in detail the transition potential for nonmesonic lambda-hypernuclear decay in a one-meson-exchange model involving the full pseudoscalar and vector meson octets and including two effects that have been systematically omitted in the literature. These are the kinematical effects due to the difference between the lambda and nucleon masses and the first-order nonlocality corrections. Numerical results for Λ12^{12}_\LambdaC and Λ5^5_\LambdaHe are presented and they show that the combined kinematical plus nonlocal corrections have an appreciable influence on the partial decay rates. However, this is somewhat diminished in the main decay observables: the total nonmesonic rate, the neutron-to-proton branching ratio, and the asymmetry parameter. The latter two still cannot be reconciled with the available experimental data. The existing theoretical predictions for the sign of the asymmetry parameter in Λ5^5_\LambdaHe are confirmed.Comment: 36 pages; LaTeX2e; 1 eps figure. Changes: 2 more tables and 14 new references added; effects on asymmetry parameter calculated; discussions expanded; more definite conclusions reache

    The Relativistic Dirac-Brueckner Approach to Asymmetric Nuclear Matter

    Full text link
    The properties of asymmetric nuclear matter have been investigated in a relativistic Dirac-Brueckner-Hartree-Fock framework using the Bonn A potential. The components of the self-energies are extracted by projecting on Lorentz invariant amplitudes. Furthermore, the optimal representation scheme for the TT matrix, the subtracted TT matrix representation, is applied and the results are compared to those of other representation schemes. Of course, in the limit of symmetric nuclear matter our results agree with those found in literature. The binding energy EbE_b fulfills the quadratic dependence on the asymmetry parameter and the symmetry energy is 34 MeV at saturation density. Furthermore, a neutron-proton effective mass splitting of mn<mpm_n^* < m_p^* is found. In addition, results are given for the mean-field effective coupling constants.Comment: 28 pages, 7 figures, to appear in Nucl. Phys. A, added additional reference

    Microscopic calculations of medium effects for 200-MeV (p,p') reactions

    Get PDF
    We examine the quality of a G-matrix calculation of the effective nucleon-nucleon (NN) interaction for the prediction of the cross section and analyzing power for 200-MeV (p,p') reactions that populate natural parity states in 16^{16}O, 28^{28}Si, and 40^{40}Ca. This calculation is based on a one-boson-exchange model of the free NN force that reproduces NN observables well. The G-matrix includes the effects of Pauli blocking, nuclear binding, and strong relativistic mean-field potentials. The implications of adjustments to the effective mass ansatz to improve the quality of the approximation at momenta above the Fermi level will be discussed, along with the general quality of agreement to a variety of (p,p') transitions.Comment: 36 pages, TeX, 18 figure

    Infinite Nuclear Matter on the Light Front: Nucleon-Nucleon Correlations

    Get PDF
    A relativistic light front formulation of nuclear dynamics is developed and applied to treating infinite nuclear matter in a method which includes the correlations of pairs of nucleons: this is light front Brueckner theory. We start with a hadronic meson-baryon Lagrangian that is consistent with chiral symmetry. This is used to obtain a light front version of a one-boson-exchange nucleon-nucleon potential (OBEP). The accuracy of our description of the nucleon-nucleon (NN) data is good, and similar to that of other relativistic OBEP models. We derive, within the light front formalism, the Hartree-Fock and Brueckner Hartree-Fock equations. Applying our light front OBEP, the nuclear matter saturation properties are reasonably well reproduced. We obtain a value of the compressibility, 180 MeV, that is smaller than that of alternative relativistic approaches to nuclear matter in which the compressibility usually comes out too large. Because the derivation starts from a meson-baryon Lagrangian, we are able to show that replacing the meson degrees of freedom by a NN interaction is a consistent approximation, and the formalism allows one to calculate corrections to this approximation in a well-organized manner. The simplicity of the vacuum in our light front approach is an important feature in allowing the derivations to proceed. The mesonic Fock space components of the nuclear wave function are obtained also, and aspects of the meson and nucleon plus-momentum distribution functions are computed. We find that there are about 0.05 excess pions per nucleon.Comment: 39 pages, RevTex, two figure

    Two-Body Correlations in Nuclear Systems

    Get PDF
    Correlations in the nuclear wave-function beyond the mean-field or Hartree-Fock approximation are very important to describe basic properties of nuclear structure. Various approaches to account for such correlations are described and compared to each other. This includes the hole-line expansion, the coupled cluster or ``exponential S'' approach, the self-consistent evaluation of Greens functions, variational approaches using correlated basis functions and recent developments employing quantum Monte-Carlo techniques. Details of these correlations are explored and their sensitivity to the underlying nucleon-nucleon interaction. Special attention is paid to the attempts to investigate these correlations in exclusive nucleon knock-out experiments induced by electron scattering. Another important issue of nuclear structure physics is the role of relativistic effects as contained in phenomenological mean field models. The sensitivity of various nuclear structure observables on these relativistic features are investigated. The report includes the discussion of nuclear matter as well as finite nuclei.Comment: Review, 104 pages including figure
    corecore