2,535 research outputs found

    Echolocation detections and digital video surveys provide reliable estimates of the relative density of harbour porpoises

    Get PDF
    Acknowledgements We would like to thank Erik Rexstad and Rob Williams for useful reviews of this manuscript. The collection of visual and acoustic data was funded by the UK Department of Energy & Climate Change, the Scottish Government, Collaborative Offshore Wind Research into the Environment (COWRIE) and Oil & Gas UK. Digital aerial surveys were funded by Moray Offshore Renewables Ltd and additional funding for analysis of the combined datasets was provided by Marine Scotland. Collaboration between the University of Aberdeen and Marine Scotland was supported by MarCRF. We thank colleagues at the University of Aberdeen, Moray First Marine, NERI, Hi-Def Aerial Surveying Ltd and Ravenair for essential support in the field, particularly Tim Barton, Bill Ruck, Rasmus Nielson and Dave Rutter. Thanks also to Andy Webb, David Borchers, Len Thomas, Kelly McLeod, David L. Miller, Dinara Sadykova and Thomas Cornulier for advice on survey design and statistical approache. Data Accessibility Data are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.cf04gPeer reviewedPublisher PD

    Decitabine-Vorinostat combination treatment in acute myeloid leukemia activates pathways with potential for novel triple therapy

    Get PDF
    Despite advancements in cancer therapeutics, acute myeloid leukemia patients over 60 years old have a 5-year survival rate of less than 8%. In an attempt to improve this, epigenetic modifying agents have been combined as therapies in clinical studies. In particular combinations with Decitabine and Vorinostat have had varying degrees of efficacy. This study therefore aimed to understand the underlying molecular mechanisms of these agents to identify potential rational epi-sensitized combinations. Combined Decitabine-Vorinostat treatment synergistically decreased cell proliferation, induced apoptosis, enhanced acetylation of histones and further decreased DNMT1 protein with HL-60 cells showing a greater sensitivity to the combined treatment than OCI-AML3. Combination therapy led to reprogramming of unique target genes including AXL, a receptor tyrosine kinase associated with cell survival and a poor prognosis in AML, which was significantly upregulated following treatment. Therefore targeting AXL following epi-sensitization with Decitabine and Vorinostat may be a suitable triple combination. To test this, cells were treated with a novel triple combination therapy including BGB324, an AXL specific inhibitor. Triple combination increased the sensitivity of OCI-AML3 cells to Decitabine and Vorinostat as shown through viability assays and significantly extended the survival of mice transplanted with pretreated OCI-AML3 cells, while bioluminescence imaging showed the decrease in disease burden following triple combination treatment. Further investigation is required to optimize this triple combination, however, these results suggest that AXL is a potential marker of response to Decitabine-Vorinostat combination treatment and offers a new avenue of epigenetic combination therapies for acute myeloid leukemia

    Comparing cover crop research in farmer-led and researcher-led experiments in the Western Corn Belt

    Get PDF
    Cover crops can mitigate soil degradation and nutrient loss and can be used to achieve continuous living cover in cropping systems, although their adoption in the Western Corn Belt of the United States remains low. It is increasingly recognized that cover crop integration into corn (Zea mays L.)-based crop rotations is complex, requiring site and operation specific management. In this review, we compared on-farm, farmer-led field scale trials to researcher-led trials carried out in small plots on University of Nebraska-Lincoln experiment stations. Although there is a range of cover crop research conducted in the state, there is no synthesis of the scope and key results of such eorts. Common cover crop challenges and goals in the state are similar to those reported nationwide; challenges include adequate planting timing, associated costs, and weather, while a top goal of cover crop use is to improve soil health. Farmer-led trials most frequently compared a cover crop to a no-cover crop control, likely reflecting a desire to test a basic design determining site-specific performance. Both researcher-led and farmer-led trials included designs testing cash crop planting timing, while some portion of farmer-led trials tested cover crop seeding rates, which are directly related to reported cover crop challenges. Farmer-led trials were carried out on a greater variety of soils, including sandy soils, whereas sandy soils were absent from researcher-led trials. More than half of farmer- led experiments were conducted on fields with slopes of 6–17% while most researcher-led experiments were conducted on fields with slopes of \u3c1%. Mean cover crop biomass production was 600 kg/ha in farmer-led and 2,000 kg/ha in researcher-led trials. Crop yields were not significantly aected by cover crops in either farmer-led or researcher-led trials. Such comparisons demonstrate that in some instances, cover crop research is addressing challenges, and in some instances, it could be expanded. This synthesis expands our knowledge base in a way that can promote co-learning between dierent scales of experiments, and ultimately, reduce risks associated with cover crop management and further promote continuous living cover of agricultural landscapes

    Temperature and Metallicity Gradients in the Hot Gas Outflows of M82

    Full text link
    We utilize deep Chandra X-ray Observatory imaging and spectra of M82, the prototype of a starbursting galaxy with a multiphase wind, to map the hot plasma properties along the minor axis of the galaxy. We extract spectra from 11 regions up to 2.5 kpc from the starbursting midplane and model the data as a multi-temperature, optically thin thermal plasma with contributions from a non-thermal (power-law) component and from charge exchange (CX). We examine the gradients in best-fit parameters, including the intrinsic column density, plasma temperature, metal abundances, and number density of the hot gas as a function of distance from the M82 nucleus. We find that the temperatures and number densities of the warm-hot and hot plasma peak at the starbursting ridge and decreases along the minor axis. The temperature and density profiles are inconsistent with spherical adiabatic expansion of a super-heated wind and suggest mass loading and mixing of the hot phase with colder material. Non-thermal emission is detected in all of the regions considered, and CX comprises 8-25% of the total absorption-corrected, broad-band (0.5-7 keV) X-ray flux. We show that the abundances of O, Ne, Mg, and Fe are roughly constant across the regions considered, while Si and S peak within 500 pc of the central starburst. These findings support a direct connection between the M82 superwind and the warm-hot, metal-rich circumgalactic medium (CGM).Comment: 15 pages, 8 figures, ApJ in pres

    The Structural Basis of Actin Organization by Vinculin and Metavinculin

    Get PDF
    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies

    Background reionization history from omniscopes

    Full text link
    The measurements of the 21-cm brightness temperature fluctuations from the neutral hydrogen at the Epoch of Reionization (EoR) should inaugurate the next generation of cosmological observables. In this respect, many works have concentrated on the disambiguation of the cosmological signals from the dominant reionization foregrounds. However, even after perfect foregrounds removal, our ignorance on the background reionization history can significantly affect the cosmological parameter estimation. In particular, the interdependence between the hydrogen ionized fraction, the baryon density and the optical depth to the redshift of observation induce nontrivial degeneracies between the cosmological parameters that have not been considered so far. Using a simple, but consistent reionization model, we revisit their expected constraints for a futuristic giant 21-cm omniscope by using for the first time Markov Chain Monte Carlo (MCMC) methods on multiredshift full sky simulated data. Our results agree well with the usual Fisher matrix analysis on the three-dimensional flat sky power spectrum but only when the above-mentioned degeneracies are kept under control. In the opposite situation, Fisher results can be inaccurate. We show that these conditions can be fulfilled by combining cosmic microwave background measurements with multiple observation redshifts probing the beginning of EoR. This allows a precise reconstruction of the total optical depth, reionization duration and maximal spin temperature. Finally, we discuss the robustness of these results in presence of unresolved ionizing sources. Although most of the standard cosmological parameters remain weakly affected, we find a significant degradation of the background reionization parameter estimation in presence of nuisance ionizing sources.Comment: 22 pages, 18 figures, uses RevTex. References added, matches published versio

    Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS

    Full text link
    We present the discovery and early evolution of ASASSN-19bt, a tidal disruption event (TDE) discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d115d\simeq115 Mpc and the first TDE to be detected by TESS. As the TDE is located in the TESS Continuous Viewing Zone, our dataset includes 30-minute cadence observations starting on 2018 July 25, and we precisely measure that the TDE begins to brighten 8.3\sim8.3 days before its discovery. Our dataset also includes 18 epochs of Swift UVOT and XRT observations, 2 epochs of XMM-Newton observations, 13 spectroscopic observations, and ground data from the Las Cumbres Observatory telescope network, spanning from 32 days before peak through 37 days after peak. ASASSN-19bt thus has the most detailed pre-peak dataset for any TDE. The TESS light curve indicates that the transient began to brighten on 2019 January 21.6 and that for the first 15 days its rise was consistent with a flux t2\propto t^2 power-law model. The optical/UV emission is well-fit by a blackbody SED, and ASASSN-19bt exhibits an early spike in its luminosity and temperature roughly 32 rest-frame days before peak and spanning up to 14 days that has not been seen in other TDEs, possibly because UV observations were not triggered early enough to detect it. It peaked on 2019 March 04.9 at a luminosity of L1.3×1044L\simeq1.3\times10^{44} ergs s1^{-1} and radiated E3.2×1050E\simeq3.2\times10^{50} ergs during the 41-day rise to peak. X-ray observations after peak indicate a softening of the hard X-ray emission prior to peak, reminiscent of the hard/soft states in X-ray binaries.Comment: 23 pages, 14 figures, 5 tables. A machine-readable table containing the host-subtracted photometry presented in this manuscript is included as an ancillary fil
    corecore