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Abstract

Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin 

receptors through their intracellular binding partners to filamentous actin, facilitating 

mechanotransduction. Here we present an 8.5 Å resolution cryo-EM reconstruction and pseudo-

atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-

terminal “strap” and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. 

We find that an analogous conformational change also occurs in the H1’ helix of the tail domain 

of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform which suppresses 

actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling 

activity of vinculin in a tissue-specific manner and provide a mechanistic framework for 

understanding metavinculin mutations associated with hereditary cardiomyopathies.
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Introduction

Vinculin is a highly conserved and essential adhesion scaffolding protein that physically 

links membrane-bound integrin and cadherin receptors through their intracellular binding 

partners to filamentous actin1; 2; 3. It plays a critical role in mechanotransduction, as vinculin 

is recruited to and stabilizes adhesions in response to force, regulates the dynamics of 

adhesions at the leading edge of migrating mesenchymal cells, and mediates the 

transmission of traction forces4; 5; 6; 7; 8; 9; 10. These functions are essential for viability, as 

genetic ablation in the mouse results in embryonic lethality at E10, with severe defects in 

heart development and neural tube closure11. Fibroblasts isolated from knockout mice 

demonstrate enhanced cytoskeletal dynamics6 and increased migration velocities in 

culture6; 11, suggesting a critical role for vinculin in regulated cell migration during 

development.

Vinculin is a 117 kDa alpha-helical protein with no known catalytic activity. It is composed 

of a large 91 kDa N-terminal “head” domain (Vh) and small 21 kDa C-terminal “tail” 

domain (Vt) connected by a 4.6 kDa, flexible proline-rich linker12; 13; 14. Mechanistically, 

vinculin facilitates mechanotransduction through interactions with at least 19 binding 

partners to coordinate intracellular signaling2 and strengthen the physical connection 

between membrane receptors and the actin cytoskeleton1; 2; 3. This mechanical 

reinforcement is primarly mediated by vinculin’s interactions with talin15, a critical integrin 

binding protein, which binds the Vh domain16, and F-actin17, which binds the Vt domain18. 

In isolation12 and in the bulk cytoplasm19 full-length vinculin adopts an auto-inhibited 

conformation, with a nanomolar-affinity interaction formed between the head and tail 

domains20, masking the Vt actin binding site20; 21. Auto-inhibition is relieved by vinculin 

engaging in simultaneous protein-protein interactions with multiple binding partners22. A 

structure of a subdomain of Vh bound to a fragment of talin displayed a conformation 

sterically incompatible with the head-tail interaction23, supporting an allosteric mechanism 
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of activation. Each talin molecule contains multiple cryptic vinculin binding sites, which can 

be revealed upon the application of tension across the talin molecule24. A model has thus 

been proposed wherein increasing traction force in an adhesion results in the accumulation 

of vinculin and reinforcement of the adhesion-cytoskeleton linkage, supported by the recent 

finding that vinculin accumulates in substantial stoichiometric excess to other components 

as an adhesion grows25.

In addition to binding actin, the isolated Vt domain bundles filaments, inducing the 

formation of dense actin fibers17; 26. Both activities are required for vinculin function in 

vivo, as lesions that selectively disrupt them in the context of the full-length molecule lead 

to defects in cell spreading, adhesion formation and maturation, and 

mechanotransduction6; 27; 28; 29. Cross-linking and tomographic studies indicate that actin 

bundling occurs through oligomerization of the Vt domain26; 27; 30. Vt primarily exists as a 

soluble monomer in vitro at physiological concentrations31, suggesting that actin binding 

results in a conformational change to reveal a cryptic dimerization interface by an unknown 

mechanism30. Previous negative stain reconstructions of Vt bound to F-actin have given rise 

to contradictory propositions for the interaction interface26; 28, due to challenges in 

unambiguously docking the pseudo-symmetric barrel-shaped Vt structure into low-

resolution envelopes. Therefore, the functionally critical and interrelated mechanisms of Vt 

actin binding and actin bundling remain unresolved, despite substantial scrutiny.

Metavinculin, a larger splice isoform which is co-expressed with vinculin in cardiac and 

smooth muscle, has been implicated in cardiomyopathies32; 33; 34 and atherosclerosis35. 

Disease mutations are found in the 68 amino-acid splice insertion32; 34, which occurs after 

vinculin amino acid 915, between helices 1 and 2 of Vt. Structural studies have shown that a 

portion of the insertion replaces the first (H1) of the five helices composing the Vt helical 

bundle, adopting a nearly identical helical conformation (H1’) despite its distinct 

sequence36. The sequence comprising H1 was not visible in the crystallographic electron 

density maps, presumably becoming an unstructured element along with the rest of the 

linker connecting the head and tail domains. Although investigations of metavinculin have 

been limited, previous studies suggest that the metavinculin tail domain (MVt) possesses 

similar actin binding to Vt but diminished actin bundling activity32; 37; 38, as well as the 

intriguing property of suppressing actin bundling by Vt38. Disease mutations in MVt 

produce higher-order actin assemblies with aberrant architectures in vitro32, suggesting that 

a detailed mechanistic understanding of Vt- and MVt-actin interactions will provide insight 

into the molecular basis of these pathologies.

Here we present sub-nanometer-resolution reconstructions of Vt and MVt bound to actin, 

sufficient for the generation of pseudo-atomic models of both interfaces. We find that Vt H1 

is displaced from the helical bundle upon actin binding, and mutagenesis of a buried residue 

in H1 in the pre-bound state suggests that this region must become solvent-accessible to 

mediate actin bundling. The remainder of the bundle undergoes a torqueing conformational 

change to relieve clashes with its binding site on actin. In contrast, actin does not undergo 

any significant rearrangements. MVt undergoes a similar structural transition, displacing 

helix H1’ to form an interaction with actin that is indistinguishable from Vt at the resolution 

of our reconstructions. Additionally, we find that the presence of sub-stoichiometric MVt 
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suppresses the actin-bundling activity of Vt, in support of a recent study38. We interpret 

these results in a conceptual model wherein vinculin and metavinculin undergo partial 

unfolding transitions commensurate with actin engagement, which can either lead to the 

promotion or suppression of actin bundling depending on the presence of the MVt insertion.

Results

Cryo-EM reconstruction of the Vt-F-actin complex

To visualize the vinculin-actin interface, we pursued cryo-EM studies of the Vt-actin 

complex (Fig. 1). To prevent Vt-mediated bundling27, which is refractory to structural 

studies, we employed a C-terminal truncation mutant (residues 879–1061 of chicken 

vinculin, hereafter referred to as VtΔC5). Vt has relatively low affinity for F-actin (~0.5 

µM21), making it technically challenging to fully decorate filaments. Furthermore, Vt-bound 

filaments are essentially indistinguishable by eye from unbound filaments in low-contrast 

images, resulting in a mixed population of decorated and undecorated filaments that cannot 

easily be sorted by selective picking of filaments for processing, or by reference-free 2D 

classification of filament segments (Fig. 1a, b). A reconstruction calculated from the entire 

dataset produced a volume that clearly showed sub-stoichiometric occupancy for VtΔC5 

(Fig. 1c).

We therefore adapted a multi-reference Iterative Helical Real Space Reconstruction 

(IHRSR)39 scheme we recently developed for the study of heterogeneous microtubule 

specimens40 (Fig. 1c). We collected and processed a dataset of undecorated F-actin 

filaments, then subjected our VtΔC5-bound dataset to a multi-reference IHRSR in EMAN2 / 

SPARX41; 42 using the sub-stoichiometrically bound and unbound models as references. 

This resulted in a VtΔC5-bound model with substantially improved occupancy. Segments 

which contributed to this model were selected for further processing using FREALIGN43, 

which produced an 8.5 Å resolution reconstruction (gold-standard FSC 0.143, 

Supplementary Fig. 1d) with clearly resolved secondary structure for both actin and VtΔC5 

(Fig 2a).

Vt undergoes a structural rearrangement upon actin engagement

Vt in isolation44 and in the context of full-length vinculin12, adopts a 5-helix bundle fold 

with C-terminal and N-terminal extensions, including a small C-terminal hairpin and N-

terminal coil “strap”. Unexpectedly, we observed only 4 helical densities that were not 

attributable to actin (Fig. 2a, orange), suggesting that one helix is displaced from the bundle 

upon actin engagement. Rigid-body docking of the isolated Vt crystal structure (PDB 

1QKR44, Fig. 2b) quantitatively supported the interaction pose produced using discrete 

molecular dynamics in the recent study of Thompson et al.28, in which helices 4 and 5 

constitute the primary binding interface, engaging two longitudinally adjacent actin 

protomers (Supplementary Fig. 1, Supplementary Movie 1, 2). This model suggests that 

helix 1 disengages from the helical bundle upon actin binding, supported by recent 

biochemical evidence that this segment becomes susceptible to proteolytic cleavage upon 

actin binding by Vt38.
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We also observed a small amount of additional density on the filament surface that was not 

explained by the docked crystal structures of Vt or actin (Fig. 2b, magenta), suggesting that 

the H1 region and / or the flexible C-terminal hairpin could form an additional contact with 

actin. To test this hypothesis, we performed mass-tagging experiments to localize these 

regions of the protein (Supplementary Fig. 2). We generated cryo-EM reconstructions of 

VtΔC5 constructs bound to F-actin with GFP fused at the C-terminus (VtΔC5-GFP, 19.2 Å 

gold-standard FSC 0.143), and N-terminal to helix 1 (GFP-E892-VtΔC5, 16.4 Å gold-

standard FSC 0.143). Amplitude-weighted difference maps calculated versus the wild-type 

VtΔC5 reconstruction showed positive density adjacent to subdomain 2 of actin 1 in both 

cases (Fig. 2b), suggesting that both regions of the protein contribute to the density and 

engage the actin surface. This conformation of the C-terminus is consistent with the recent 

report that R1049 is important for actin binding29, bringing this residue close to the 

negatively charged surface of subdomain 2 (Fig. 2c).

In addition to the displacement of helix 1, the rigid-body fit of helices 2–5 showed 

inconsistencies with the density map, including a clash between the N-terminal tip of helix 5 

and the actin surface (Fig. 2d), suggesting that structural rearrangements occur throughout 

Vt upon actin binding. To visualize this conformational transition in detail, we performed 

molecular dynamics flexible fitting45 (MDFF) of Vt residues 917–1047 and actin to generate 

a pseudo-atomic model of the interface (Fig. 3a). We adapted a recently developed 

weighting-optimization procedure46 to reduce over-fitting into our medium-resolution maps 

(Supplementary Fig. 3). The Vt-actin interface has been extensively probed by large-scale 

deletions18, scanning alanine mutagenesis47, and site-directed mutagenesis28, and our model 

explains the preponderance of mutations previously reported to reduce actin binding. The 

exception, a series of multiple alanine substitutions in H3 which caused minor (10–20%) 

reductions in actin binding47, could potentially indirectly affect Vt actin binding by reducing 

stability of the protein.

To further validate our MDFF model, we mutagenized residues that mediate putative 

contacts at both protomer binding sites in the context of full-length Vt (residues 879–1066) 

and performed co-sedimentation assays (Fig. 3b-d). Mutations at both the actin 1 interface 

(I1046A, R987A) and actin 2 interface (M1022A, M1005A/R1008A) resulted in modest but 

significant reductions in actin binding. A double mutant with substitutions at both interfaces 

(V1001A/R987A) demonstrated dramatically reduced actin binding, highlighting the 

composite nature of the interface and the importance of both binding sites for full actin 

engagement. This double mutation resulted in a similar reduction in actin binding to the 

previously reported I997A mutant (Fig. 3b, pink), to our knowledge the most potent actin-

binding single point mutation reported to date28. However, I997A also affects Vt’s 

interaction with Phosphatidylinositol 4,5-bisphosphate (PIP2)28, complicating interpretation 

of in vivo studies with this construct6; 48. Future studies will focus on the affects of our 

newly identified mutants on Vt-PIP2 interactions, with the goal of identifying clean 

separation-of-function mutations. Consistent with the requirement of actin binding for Vt-

mediated actin bundling, all of the point mutants resulted in a bundling defect commensurate 

with their binding defect (Fig. 3e, f). I1046 produced an even greater defect in actin 

bundling than actin binding, suggesting this residue also contributes to Vt oligmerization.
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R987 contacts the DNAse-binding loop (D-loop) of actin 1, a region of actin which 

undergoes a substantial rearrangement upon polymerization49 and which has been suggested 

to be one of the more labile contacts in the filament50. The structure of actin in the Vt-bound 

filament showed minimal differences (RMSD 0.720 Å) versus an MDFF model of naked 

actin filaments derived from a control reconstruction in the absence of Vt (7.6Å gold-

standard FSC 0.143, Fig. 2a), and both of the recently reported high-resolution F-actin 

structures (PDB 3j8a51 / 3j8i52, Fig. 4a), with minor differences distributed evenly 

throughout the protein (Fig. 4b). Thus, despite interacting with both rigid and flexible 

regions of actin, Vt binding does not alter the structure of F-actin to an extent detectable at 

the resolution of our maps.

Actin binding activates H1-mediated bundling via a steric mechanism

Superposition of the crystal structure of Vt in isolation (PDB 1QKR44) with the MDFF-

derived model reveals a substantial remodeling of the H1 docking site on the Vt helical 

bundle (Fig. 5a, b), primarily produced by a twisting rearrangement of helices 4 and 5 

relative to the remainder of the bundle (Fig. 5a, Supplementary Movie 3). This would 

generate clashes between large inward-facing hydrophobic residues in H1 and the 

rearranged hydrophobic core of Vt, necessitating the displacement of H1 for this 

conformational transition to occur. We infer that the energy to stabilize this rearrangement is 

provided by actin binding, as helix 5 clashes with actin 2 in the pre-bound conformation 

(Fig. 2d). Thus, we propose a model in which the need to relieve multiple clashes 

allosterically couples actin binding to H1 release.

Since H1 release is the largest conformational change which occurs upon Vt actin 

engagement, we hypothesized that H1 could play a previously unappreciated role in actin 

bundling. To test this hypothesis, we focused on residues which are buried in the pre-bound 

state, reasoning that they would either sterically promote H1 release, or mediate binding 

interactions in trans upon being exposed. Co-sedimentation assays demonstrated that a 

single point mutant of one such residue, M898A, did not significantly affect Vt actin binding 

in the context of full-length Vt (Fig. 5c, e), but almost completely eliminated actin bundling 

(Fig. 5d, f), consistent with this model. We therefore propose that H1 release upon actin 

binding by Vt is a key second step in vinculin activation, enabling Vt-mediated actin 

bundling subsequent to actin binding.

MVt undergoes an analogous structural transition upon actin binding

We next focused our analysis on vinculin’s muscle-specific splice isoform, metavinculin. 

We obtained an 8.2 Å reconstruction (Fig. 6a, Fig. 1d) of residues 858–1129 of human 

metavinculin, hereafter referred to as MVtΔC5, bound to F-actin. At sub-nanometer 

resolution, this reconstruction is essentially indistinguishable from the VtΔC5 

reconstruction, with minor differences in connectivity between the helical densities. In 

contrast to a previous negative stain reconstruction, where extra density was observed 

protruding from MVt when compared with Vt37, rigid-body docking of the MVt crystal 

structure into our sub-nanometer resolution density map demonstrates that helix H1’ is also 

displaced from the helical bundle when MVt binds actin, in agreement with the similar 

proteolysis susceptibility profile reported for MVt H1’ and Vt H1 upon actin binding38. In 
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addition to the different resolutions of the studies, an explanation for this discrepancy may 

lie in the different constructs used for structural analysis, as the previous reconstruction 

excluded residues 858–879 and included residues 1130–1134.

Additional density is also present on the surface of MVtΔC5 decorated filaments, forming a 

different pattern compared to VtΔC5 (Fig. 6a). Although it is tempting to speculate that the 

displaced H1’ forms slightly different contacts with the actin surface, higher resolution 

reconstructions will be required to visualize these interactions in detail. Superimposing an 

equivalent MDFF model of MVt-actin with that of Vt-actin (Fig. 6b) shows only minor 

differences in both actin (0.732 Å RMSD) and the bound protein (0.752 Å RMSD), 

supporting our assertion from inspection of the density maps, that at sub-nanometer 

resolution, the interfaces are effectively indistinguishable. Nevertheless, a recent report 

which demonstrated that MVt alters the mechanical properties of actin filaments included 

spectroscopic evidence of actin structural rearrangements in the presence of MVt38. Thus, it 

is possible that subtle rearrangements of individual actin residues do occur, which would 

require higher resolution to visualize.

MVt inhibits Vt-mediated actin bundling

Although Vt is a potent actin bundling factor, MVt has previously been reported to lack this 

activity32; 37. Our observations that MVt H1’ and Vt H1 are released upon actin binding, and 

that H1 mediates Vt’s actin bundling activity, provide an appealing explanation: H1’, which 

differs in sequence, fails to promote MVt dimerization upon actin engagement. Interestingly, 

the H1 sequence is nevertheless present in our MVt construct, suggesting that the presence 

of H1’ inhibits the ability of released H1 to mediate MVt interactions in trans. In vivo, 

metavinculin is always co-expressed with vinculin, with an increasing amount of 

metavinculin expression positively correlating with tissue contractility53. We thus 

investigated the effects of the presence of MVt on Vt-mediated actin bundling.

Consistent with previous studies, we found that full-length Vt robustly produces large actin 

bundles (Supplementary Fig. 4a-c), which were apparent in electron micrographs of 

negatively-stained specimens (Supplementary Fig. 4a) and in the low speed pellet of a 

differential centrifugation assay (Sup Fig. 4b, c). Conversely, MVt failed to produce bundles 

(Supplementary Fig. 4a-c), although binding was apparent in the micrographs 

(Supplementary Fig. 4a) and pelleting assays (data not shown). In agreement with a recent 

report38, we found that varying the ratio of MVt and Vt in the context of a constant amount 

of total binding protein produced reduced bundling relative to Vt alone (Supplementary Fig. 

4d-f). Interestingly, this effect is not attributable to simply reducing the amount of Vt, as 

omitting MVt under identical conditions robustly produced bundles (Supplementary. Fig. 

4g, h), suggesting that one function of metavinculin is to suppress actin bundling by 

vinculin. We tested this hypothesis by adding increasing amounts of MVt under conditions 

of a constant amount of Vt (Fig. 6c, d), which mimics physiological conditions, wherein 

vinculin expression remains fairly constant and metavinculin expression varies53. The 

presence of a small amount of MVt produced a drastic reduction in actin bundling, in 

agreement with a model wherein MVt “poisons” the actin bundling activity of Vt38.
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Discussion

Utilizing cryo-EM, molecular modeling, and complimentary binding assays, we have 

produced detailed models of the critical interactions between both vinculin isoforms and F-

actin. Our data support the recent DMD model of Thompson et al., in which the primary Vt 

actin-binding interface comprises helices 4 and 5. In addition to clarifying the literature and 

rationalizing the preponderance of mutations previously reported to affect the vinculin-actin 

interaction, our model can serve as a guide for the selection of separation-of-function 

mutants for future studies which seek to specifically interrogate the role of vinculin’s actin-

binding activity. Additionally, the data-processing strategy we have developed for 

visualizing this low-affinity complex can be employed to study the interaction of F-actin 

with other binding partners, few of which have been structurally analyzed by cryo-EM at 

similar resolution51; 54; 55; 56.

Our finding that helix H1 undocks from the Vt bundle upon actin engagement to mediate 

actin bundling, reminiscent of earlier predictions of “unfurling” of this domain44, adds an 

additional layer to the vinculin activation mechanism (Fig. 7). After the interaction between 

Vh and Vt is disrupted, H1 must also be disengaged to license the Vt-actin interaction. 

Although our data do not discriminate between H1 release followed by actin binding or 

vice-versa, the steric incompatibility between the H1-docked state and the actin-bound state, 

as well as NMR data suggesting that H1 undergoes conformational exchange in the isolated 

Vt57, support the former model. Since M898, an H1 residue that is buried in the pre-bound 

state, is required to support actin bundling by Vt, we conclude that this conformational 

transition is required for vinculin’s actin-bundling activity. The structure of the actin-

induced Vt dimer (reviewed in ref. 58 ) remains an important subject for future 

investigations.

Vinculin sustains substantial tensile forces in adhesions in vivo59, and a recent super-

resolution light microscopy study demonstrated that the molecule is, on average, oriented 

along the dorsal-ventral axis of an adherent cell with the Vh domain closer to the ventral 

surface48. These data suggest that a vinculin molecule bound to both talin via Vh and actin 

by Vt will experience tensile forces in a geometry that will favor the undocking of H1 from 

the Vt bundle. We speculate that this may give rise to a mechanism by which vinculin can 

reinforce adhesion in response to force: if H1 is in equilibrium between the docked and 

undocked states, the presence of tension will favor H1 undocking, and by extension vinculin 

actin binding and bundling, bolstering the adhesion-cytoskeleton linkage (Fig. 7).

Our finding that MVt suppresses actin bundling by Vt suggests that one role of metavinculin 

is to tune actin bundling by vinculin in highly contractile tissues, the physiological 

significance of which is an important subject for future investigation. The detailed molecular 

mechanism for this inhibition, as well as that underlying Vt oligmerization to bundle actin, 

remain to be determined. When removed from the context of Vt, the sequence comprising 

H1 fused to GFP fails to dimerize, does not interact with the Vt-actin complex, and does not 

interact with actin (data not shown). Our mass-tagging experiments (Fig. 2b) demonstrating 

that the undocked H1 segment and the Vt C-terminus are closely apposed on the actin 

surface, as well as the previous demonstration that the Vt C-terminus is required for 
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bundling27, lead us to speculate that bringing these two segments into close spatial 

proximity contributes to the generation of the Vt oligomerization interface.

The metavinculin insertion fused to GFP similarly does not suppress Vt-mediated actin 

bundling (data not shown), although it does in the context of actin bound MVt, where H1’ is 

also released. Additionally, H1’ was reported to be dispensable for Vt-MVt interaction in 

presence of PIP2 and the absence of actin36. These data are most consistent with the recent 

proposal that the negative charge of the metavinculin insertion, which is highly acidic, 

inhibits actin bundling through electrostatic repulsion, as the released H1’ would allow this 

negative charge to sample a large volume while remaining tethered to the actin-bound 

MVt38. However, this model is difficult to reconcile with the observation that single disease 

point mutations in MVt result in actin aggregation by this domain in vitro32, supporting a 

more specific inhibitory role for this segment in the actin-bound context. This suggests a 

complex interplay between the ordered and disordered regions of these proteins on the actin 

surface that cannot be easily dissected through primary structure-function analysis. By 

precisely defining these regions, their poses and conformations on actin, and the activities 

they confer, this study paves the way to delineating the mechanisms at work.

Methods

Expression Cloning

The C-terminally GFP tagged construct (VtΔC5-GFP, Vt residues 879–1061 with a C-

terminal GFP fusion linked by the sequence “GIGSGSNGSSGS”) was generated using 

Ligation Independent Cloning (LIC) in the H6-msfGFP vector (Addgene #29725), which 

encodes an N-terminal, TEV cleavable hexa-histidine tag, the linker, and a C-terminal EGFP 

tag. The N-terminally tagged construct (GFP-E892-VtΔC5, Vt residues 892–1061 with an 

N-terminal GFP fusion and no linker sequence) was generated using Sequence and Ligation 

Independent Cloning (SLIC), inserting the ORF in-frame after the GFP. The codon-

optimized sequence of human MVt (residues 858–1134) for bacterial expression was 

synthesized (Geneart), and MVt and MVtΔC5 (residues 858–1129) were subcloned into the 

2HR-T vector (Addgene #29718), which encodes an N-terminal, TEV cleavable hexa-

histidine tag, using LIC.

Protein Purification

The full length Vt constructs employed in pelleting assays and negative stain-EM 

experiments (comprising chicken vinculin amino acids 879–1066) and VtΔC5 construct 

employed for cryo-EM structure determination (comprising chicken vinculin amino acids 

879–1061) were expressed and purified as previously reported27. Rabbit muscle actin was 

purified as previously described60. MVt, MVtΔC5, and VtΔC5 GFP-fusion constructs were 

expressed in BL21(DE3)-Rosetta 2 cells. Expression was induced with 0.5 mM IPTG, 

followed by overnight shaking at 25°C. Cells were harvested at 5,000 RCF, then lysed by 

sonic disruption in Lysis Buffer (50 mM Tris-Cl, 200 mM NaCl, 10 mM imidazole, 5 mM 

beta-mercaptoethanol, pH 8.0) supplemented with Complete ULTRA protease inhibitor 

tablets (Roche). Lysates were clarified by centrifugation at 20,000 RCF, and the fusion 

proteins then captured by batch binding to Ni-NTA resin (Qiagen). The resin was poured 
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into a gravity column, then washed with 20 column volumes Wash Buffer (50 mM Tris-Cl, 

200 mM NaCl, 25 mM imidazole, 5 mM beta-mercaptoethanol, pH 8.0), and eluted with 10 

column volumes of Elution Buffer (50 mM Tris-Cl, 200 mM NaCl, 250 mM imidazole, 5 

mM beta-mercaptoethanol, pH 8.0). The hexa-histidine tag was cleaved with TEV protease 

(1:50 w/w ratio) during overnight dialysis against Storage Buffer (25mM Tris-Cl pH 8.0, 

150 mM NaCl, 1 mM EDTA, 1 mM DTT) at 4°C. The cleaved protein was then purified by 

size exclusion chromatography using a Superdex 200 Increase column (GE Healthcare) pre-

equilibrated with Storage Buffer. Peak fractions were pooled, concentrated by ultrafiltration, 

and flash-frozen in liquid nitrogen.

Cryo-EM sample preparation

F-actin and VtΔC5 / MVtΔC5 constructs were diluted to 0.3 µM and 10 µM, respectively, in 

KMEI (50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10 mM imidazole, pH 7.0). 3 µl of actin 

was applied to a plasma-cleaned 1.2 / 1.3 200 mesh C-flat holey carbon grid (Protochips) in 

the humidified chamber of a Leica GP plunge freezer and incubated for 60s at 25°C. 3 µl of 

binding protein was then applied and incubated for 60 s. 3 µl of solution was then removed 

and an additional 3 µl of vinculin applied. After an additional 60 s, 3 µl of solution was 

removed, then the grid was blotted for 2 s and plunge-frozen in liquid ethane.

Cryo-EM data collection

Cryo-EM data were collected with the Leginon software package61 on a Tecnai F20 

operating at 120 kV using a Gatan Ultrascan 4K CCD. Images were collected with a dose of 

25 electrons / Å2 and underfocus ranging from 1.5 to 3 microns at 100,000 X magnification, 

corresponding to a calibrated pixel size of 1.09 Å at the specimen level.

2D Image processing

Contrast transfer function (CTF) estimation and extraction of segments was performed in the 

Appion data processing environment62. Unless otherwise noted, operations were carried out 

using proc2d from the EMAN processing package63. CTF parameters were estimated with 

CTFFIND364. Segments were windowed in 512 pixel boxes with 81 Å of non-overlap, 

corresponding to a step-size of 3 actin protomers, normalized with xmipp_normalize65, then 

binned by 2. Reference-free two-dimensional classification and averaging was performed 

with RELION 1.366. For 3D reconstruction with SPARX/EMAN2, segments were extracted 

from phase-flipped images. For 2D classification with RELION and 3D reconstruction with 

FREALIGN, CTF correction was performed internally.

3D sorting

We adapted an image processing procedure previously developed for reconstructing 

microtubule specimens for this work, which implements the Iterative Helical Real Space 

Refinement protocol39. Refinement and reconstruction is performed using functions from 

the EMAN2/SPARX libraries41; 42, and the helical search is performed using the program 

hsearch_lorentz of Egelman39. Segments which contributed to featureful 2D class-averages 

were used for 3D refinement. An initial model was generated by low-pass filtering an actin 

reconstruction (EMD-199054) to 35 Å. Initially a single-model 3D refinement was 
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performed using all segments from the VtΔC5-F-actin dataset. This produced a 

reconstruction in which the Vt density was clearly sub-stoichiometric, suggesting that 

sorting bound from unbound segments would improve the reconstruction.

We collected a dataset of naked F-actin filaments and performed a single-model refinement 

as described above. We then used the sub-stoichiometric VtΔC5-F-actin and naked F-actin 

models, both low-pass filtered at 35 Å, to perform a multi-model 3D refinement. Segments 

were also excluded from the reconstructions based on a cross-correlation cutoff. Several 

iterations of this procedure produced a VtΔC5-bound model with substantially improved 

occupancy: we selected the segments which contributed to this model for further refinement.

Independent half-map refinement

Refining datasets in independent halves has recently been introduced as a standard to reduce 

over-fitting and improving resolution estimates by the Fourier Shell Correlation (FSC)67. 

We developed a single-model IHRSR implementation of this so-called “gold-standard FSC” 

based refinement using our EMAN2/SPARX procedure. Segments selected by the multi-

model procedure were divided into random half-datasets. The same low-pass filtered initial 

reference was used for each half-dataset. After each round of refinement, the asymmetric 

reconstructions of the half-datasets were summed, and the sum used to calculate new helical 

parameters. These helical parameters were then applied to each half-reconstruction 

independently, which were then compared and low-pass filtered based on the FSC to 

provide the references for the next round of refinement. This procedure maintains 

independent noise between the two half-datasets, while anchoring them to have the same 

helical parameters which are iteratively refined. Further segments were not excluded by a 

cross-correlation cutoff at this stage of refinement.

After refinement in EMAN2/SPARX, final refinement and CTF-corrected reconstruction 

was performed using FREALIGN v9.0343 with fixed helical parameters from the final round 

of IHRSR. The half-datasets were independently refined and reconstructed, and a single 

merged reconstruction was also generated using the alignment parameters from the 

independent halves. The data from the GFP-Vt and MVt constructs were processed using an 

identical procedure; for the naked F-actin dataset only a single model was used for the first 

stage of refinement.

All software is available upon request.

Post-processing

The final resolutions of the VtΔC5-F-actin, MVtΔC5-F-actin, and naked F-actin 

reconstructions were 8.5, 8.2, and 7.6 Å, respectively, based on the FSC 0.143 criterion. The 

maps were amplitude-sharpened using the program BFACTOR (http://grioriefflab.janelia.or/

bfactor), with a negative B-factor of -1000, -1000, and -750 Å3, respectively, with the high-

frequency cutoff determined by the FSC 0.143. Difference maps were calculated between 

the GFP-Vt reconstructions and the VtΔC5 reconstruction using the program DIFFMAP 

(http://grioriefflab.janelia.or/diffmap), with unsharpened maps as inputs, then low-pass 

filtered to 15 Å prior to visualization.
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Molecular Dynamics Flexible Fitting

In order to aid the interpretation of our maps, we utilized the molecular dynamics flexible 

fitting procedure (MDFF)45. In this and related procedures, the weighting between the 

experimental cryo-EM map and the model parameters (in this case the molecular dynamics 

force-field) must be carefully chosen to take full advantage of the experimental data while 

avoiding the pitfall of over-fitting due to limited resolution and noise in the reconstruction.

To this end we implemented the protocol recently proposed by DiMaio and co-workers, 

which makes use of independent half-maps to optimize the weighting parameter g46. The 

half-maps from the VtΔC5-F-actin reconstruction and F-actin alone reconstruction were B-

factor sharpened identically to the corresponding full reconstruction. Rigid-body docking 

models were then generated from a segment of the Vt crystal structure (PDB 1QKR44) 

corresponding to residues 917–1047 and the recently reported high-resolution cryo-EM 

structure of F-actin bound to tropomyosin (PDB 3J8A51) using UCSF Chimera. The model 

consisted of 8 actin protomers and 6 Vt molecules, producing a central layer of the model 

where all protein-protein interactions are satisfied. To generate the starting model for human 

MVt, residue 943 of the Vt model was computationally mutagenized from asparagine to 

threonine using UCSF Chimera68, the only difference in sequence between the two 

constructs.

MDFF simulations were then performed varying g with explicit solvent and 50 mM KCl. 

After a brief energy minimization step to remove severe clashes from the starting model, the 

recommended MDFF procedure proceeds in two steps: molecular dynamics with a low-map 

weighting, and a final longer energy minimization using a high map-weighting. We 

attempted varying g at both steps, and varying g at the second step while keeping a constant 

recommended value of 0.3 at the first step (Supplementary Figure 5). Model fitting (100 ns 

simulation followed by 2000 minimization steps) was performed with one of the two half-

maps (the “training map”), then compared to the high resolution shells of the other half-map 

(the “test map”) via the FSC, which has been found to be more sensitive to over-fitting than 

real-space correlation46. Model quality was also assessed using MolProbity69 as 

implemented in Phenix70. Overfitting was detected by a divergence in the FSC between the 

training map and the half-map, which corresponded to a deterioration in the model quality as 

assessed by MolProbity.

Final MDFF models were generated using the full reconstructions (250 ns simulation, 2000 

minimization steps). Symmetry restraints were imposed on the Cα atoms of the actin 

protomers as described, and the positions of bound ADP and Magnesium ions were kept 

fixed during the molecular dynamics step due to the limited resolution of the 

reconstructions.

Negative stain EM

Actin, full-length Vt, and full-length MVt were mixed in KMEI in the indicated ratios and 

incubated for 15 minutes. 4 µl of sample was applied to a glow-discharged continuous 

carbon grid (Ted Pella). After 60 s of incubation, the grid was washed in 3 100 µl drops of 
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1% uranyl acetate and blotted to dryness. Images were collected on a FEI Tecnai 12 

operating at 120 kV using an Ultrascan 2K CCD camera (Gatan).

Actin Co-sedimentation assays

Actin co-sedimentation assays in Figures 2 and 3, and Supplementary Figures 3 and 4, were 

performed as previously reported27; 28. All co-sedimentation assays were performed with 

constructs comprising full-length Vt (residues 879–1066) and MVt (residues 858–1134). 

Briefly, actin-Vt mixtures were generated to the concentrations reported (10 µM Vt, variable 

actin concentrations) and were incubated at room temperature for 30 minutes in co-

sedimentation buffer (10 mM Tris pH 7.5, 100 mM KCl, 2.5 mM MgCl2, and 2 mM 

dithiothreitol (DTT)). The samples were then spun for 30 min at 150,000 RCF and the 

supernatant and pellet separated. These fractions were resuspended to equal volumes and 

analyzed by SDS PAGE. For actin binding, the density of the Vt band was determined and 

the percentage of Vt in the pelleted fraction was determined. For actin bundling, 20 µM F-

actin was used instead of various concentrations. The samples were spun for 10 minutes at 

5,000 RCF and the supernatant and pellet fractions separated. After SDS PAGE analysis, 

densitometry was performed with ImageJ71.

Co-sedimentation assays in Fig. 6 and Supplementary Fig. 6 were performed as stated 

above, with the following changes: For actin bundling, 3µM F-actin was mixed with the 

indicated concentrations of Vt and/or MVt, in KMEI buffer. The samples were spun for 15 

minutes at 12,000 RCF and the supernatant and pellet fractions collected. The supernatant 

fraction was then spun for 15 min at 350,000 RCF and the supernatant and pellet fractions 

collected. The pellet from the first step (low-speed pellet) and pellet from the second step 

(high-speed pellet) were resuspended in an equal volume to the supernatant, followed by 

analysis by SDS-PAGE.

Molecular Graphics

All display items were prepared using UCSF Chimera68, which was also used for 

segmenting maps and superimposing atomic models. Density map coloring in Figure 2b and 

Figure 6a was assigned by a 4.5 Å distance cutoff from docked atomic models and bead 

models of unoccupied densities. Reported RMSD values for actin correspond to 

superpositions of Chain A in the deposited MDFF models. Electrostatic potential surface 

map was calculated with the Adaptive Poisson-Boltzmann Solver (APBS)72.

Statistics

Student’s t-tests were performed using Microsoft excel.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1) Cryo-EM reconstructions of vinculin (Vt) and metavinculin (MVt) tail 

domains bound to F-actin.

2) MVt and Vt undergo partial unfolding transitions upon actin engagement.

3) This partial unfolding transition is required for actin bundling by Vt.

4) Tension will favor the partially unfolded, actin bound state, reinforcing 

adhesion through vinculin.
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Figure 1. Cryo-EM of the Vt-actin interface
(a) Cryo-EM micrographs of actin filaments in the presence (right) and absence (left) of 

VtΔC5. Bar, 50 nm. (b) Reference-free class averages of segments extracted from the 

indicated datasets. Clear density for Vt is not readily discernible. Bar, 10 nm. (c) Overview 

of the multi-model reconstruction strategy to visualize substoichiometric VtΔC5. Actin, light 

blue, VtΔC5, orange. (d) Fourier Shell Correlation curves of independently-reconstructed 

half reconstructions (“gold-standard”) for the indicated specimens.
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Figure 2. Subnanometer-resolution reconstruction of the Vt-actin interface
(a) Reconstructions of actin alone (left) and actin decorated with Vt ΔC5 (right). Actin, light 

blue, Vt, orange. (b) Rigid-body docking of the Vt crystal structure. Helix 1 (H1), which 

was not visualized, is colored magenta. Cryo-EM density attributed to actin and and Vt by 

docking analysis are colored blue and transparent grey, respectively. Difference maps of 

GFP-E892-VtΔC5 – VtΔC5 (pink) and VtΔC5-GFP – VtΔC5 (green) are displayed as 

isosurfaces contoured at 15 σ. The fusion sites for GFP constructs are labeled and displayed 

in space-filling representation in the same color as the corresponding difference maps. 

Density tentatively attributed to Vt rearrangements is magenta. (c) Colored as in b, a view 

highlighting the density on the actin surface. Actin 1 is displayed as an electrostatic potential 

surface map, contoured at +/− 10 KbT/e (blue, positive; red, negative). (d) Colored as in b, a 

view of the Vt H4-H5 helical hairpin, which fits the density poorly. Asterisk highlights a 

clash with the actin surface.
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Figure 3. MDFF model of the Vt-actin interface
(a) The MDFF model (actin 1, light blue, actin 2, dark blue, Vt orange, ADP, pink) is shown 

in the segmented density map (transparent grey). (b) Colored as in a, residues that affect 

actin binding affinity are highlighted in space-filling representation and varying colors. (c) 

Representative SDS-PAGE analysis of high-speed co-sedimentation assays of Vt point 

mutants demonstrate impaired actin binding. Vt constructs, 10 µM. P, pellet, S, supernatant. 

(d) Quantification of c. Error bars represent S.D., n ≥ 4. Asterisks indicated p < 0.01 relative 

to wild-type control, t-test. N.s., not significant. Wild-type control is displayed on both plots 

for comparison purposes. (d) Representative SDS-PAGE analysis of low-speed actin 
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sedimentation assays demonstrate impaired actin bundling in the presence of Vt point 

mutants commensurate with impaired binding. Vt constructs, 10 µM, actin, 20 µM. P, pellet, 

S, supernatant. (e) Quantification of d. Error bars represent S.D., n ≥ 4. Single asterisk 

indicates p < 0.05, double asterisk p <0.01 relative to wild-type control, t-test. All co-

sedimentation assays were performed with full-length Vt constructs.
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Figure 4. Vt binding does not substantially alter the conformation of actin
(a) Superposition of actin protomers from the Vt-actin MDFF model (light blue) with the 

actin alone MDFF model (light purple, 0.720 Å RMSD), the high-resolution structure of the 

actin-tropomyosin filament (PDB ID 3j8a, dark blue, 1.029 Å RMSD), and the high-

resolution structure of F-actin (PDB ID 3j8i, dark red, 1.144 Å RMSD) (b) Actin from the 

Vt-actin MDFF model colored by per-residue Cα RMSD when superimposed on the actin 

alone MDFF model (light blue vs. light purple in a). Vt is shown in transparent orange, ADP 

in green. Subtle differences are distributed throughout, with no obvious conformational 

changes occurring at the Vt binding site.
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Figure 5. A steric mechanism promotes H1 release to bundle actin
(a) Superposition of the MDFF Vt model (orange; view from pointed end) with helices 2–5 

of the rigid-body docked crystal structure of Vt (PDB 1QKR, red), highlighting the 

rearrangement of helices H4 and H5 to relieve clashes with actin (blue). (b) A view which 

highlights the clash of H1 (magenta) residue M898 with V1024 in the actin-bound state. (c) 

Representative SDS-PAGE of high-speed co-sedimentation assay demonstrates Vt M898A 

retains F-actin binding. Vt M898A, 10 µM. S, supernatant, P, pellet. (d) Representative 

SDS-PAGE of low-speed co-sedimentation assay shows strongly impaired actin bundling of 
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Vt M898A. Vt M898A, 10 µM, actin, 20 µM. S, supernatant, P, pellet. (e) Quantification of 

c. Vt wild-type control redisplayed from Fig. 3d for comparison purposes. Error bars 

represent S.D., n ≥ 3. N.s., not significant. (f) Quantification of d. Wild-type control 

redisplayed from Fig. 3e for comparison purposes. Actin, 20 µM, Vt, 10 µM. Error bars 

represent S.D., n ≥ 10. Triple asterisk, p < 0.0001 relative to wild-type control, t-test. All co-

sedimentation assays were performed with full-length Vt constructs.
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Figure 6. MVt H1’ is also released upon actin engagement to suppress actin bundling by Vt
(a) Rigid-body docking of the MVt tail (firebrick) into the MVtΔC5-F-actin reconstruction 

(actin, blue, MVt, transparent grey). H1’ is pink. Asterisk indicates unoccupied density. (b) 

Superposition of the MDFF models of MVt-actin and Vt-actin complexes, aligned on actin 

1. Vt, orange, MVt, firebrick, actin from MVt-actin model, dark blue, actin from Vt-actin 

model, light blue. (c) Representative SDS-PAGE analysis of differential centrifugation 

assays of 3.0 µM actin in the presence of 3.0 µM Vt and the indicated amounts of MVt. (d) 

Quantification of c. Control condition of Vt alone is replotted from Supplementary Fig. 4h. 
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Error bars represent S.D., n = 3. Single asterisk, p < 0.05, double asterisk, p < 0.01, t-test vs. 

Vt alone. All co-sedimentation assays were performed with full-length MVt and Vt 

constructs.
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Figure 7. Model of vinculin activation and tension reinforcing actin engagement
Upon entering an adhesion, the interaction between Vh (green) and Vt (orange) is broken by 

engaging multiple binding partners (not shown). The linkage between Vh and the plasma 

membrane (black line) occurs through multiple layers of binding partners (i.e. talin, integrin, 

schematized as a dashed line, not to scale). H1 (magenta) must undock from the Vt bundle 

for Vt to engage actin. After actin binding and H1 release, Vt is capable of bundling actin 

(note: the detailed structure of the actin-induced Vt dimer structure remains unknown, 

magenta circle indicates an interaction). In this configuration, tension across the vinculin 

molecule will prevent H1 from re-docking, reinforcing actin binding and bundling.
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