194 research outputs found
Resource allocation in a university environment : a test of the Ruefli, Freeland, and Davis goal programming decomposition algorithms / BEBR No. 735
Bibliography: p. 20-22
Whole brain resting state functional connectivity abnormalities in schizophrenia
Background
Schizophrenia has been associated with disturbances in brain connectivity; however the exact nature of these disturbances is not fully understood. Measuring temporal correlations between the functional MRI time courses of spatially disparate brain regions obtained during rest has recently emerged as a popular paradigm for estimating brain connectivity. Previous resting state studies in schizophrenia explored connections related to particular clinical or cognitive symptoms (connectivity within a-priori selected networks), or connections restricted to functional networks obtained from resting state analysis. Relatively little has been done to understand global brain connectivity in schizophrenia.
Methods
Eighteen patients with chronic schizophrenia and 18 healthy volunteers underwent a resting state fMRI scan on a 3 T magnet. Whole brain temporal correlations have been estimated using resting-state fMRI data and free surfer cortical parcellations. A multivariate classification method was then used to indentify brain connections that distinguish schizophrenia patients from healthy controls.
Results
The classification procedure achieved a prediction accuracy of 75% in differentiating between groups on the basis of their functional connectivity. Relative to controls, schizophrenia patients exhibited co-existing patterns of increased connectivity between parietal and frontal regions, and decreased connectivity between parietal and temporal regions, and between the temporal cortices bilaterally. The decreased parieto-temporal connectivity was associated with the severity of patients' positive symptoms, while increased fronto-parietal connectivity was associated with patients' negative and general symptoms.
Discussion
Our analysis revealed two co-existing patterns of functional connectivity abnormalities in schizophrenia, each related to different clinical profiles. Such results provide further evidence that abnormalities in brain connectivity, characteristic of schizophrenia, are directly related to the clinical features of the disorder.National Alliance for Medical Image Computing (U.S.) (Grant U54 EB005149)National Institutes of Health (U.S.) (R01 M074794)Medical Research Council of Australia (Overseas-Based Biomedical Traning Fellowship 520627
The Role of Action-Effect Contingency on Sensory Attenuation in the Absence of Movement
Stimuli that have been generated by a person's own willed motor actions generally elicit a suppressed electrophysiological, as well as phenomenological, response than identical stimuli that have been externally generated. This well-studied phenomenon, known as sensory attenuation, has mostly been studied by comparing ERPs evoked by self-initiated and externally generated sounds. However, most studies have assumed a uniform action–effect contingency, in which a motor action leads to a resulting sensation 100% of the time. In this study, we investigated the effect of manipulating the probability of action–effect contingencies on the sensory attenuation effect. In Experiment 1, participants watched a moving, marked tickertape while EEG was recorded. In the full-contingency (FC) condition, participants chose whether to press a button by a certain mark on the tickertape. If a button press had not occurred by the mark, a sound would be played a second later 100% of the time. If the button was pressed before the mark, the sound was not played. In the no-contingency (NC) condition, participants observed the same tickertape; in contrast, however, if participants did not press the button by the mark, a sound would occur only 50% of the time (NC-inaction). Furthermore, in the NC condition, if a participant pressed the button before the mark, a sound would also play 50% of the time (NC-action). In Experiment 2, the design was identical, except that a willed action (as opposed to a willed inaction) triggered the sound in the FC condition. The results were consistent across the two experiments: Although there were no differences in N1 amplitude between conditions, the amplitude of the Tb and P2 components were smaller in the FC condition compared with the NC-inaction condition, and the amplitude of the P2 component was also smaller in the FC condition compared with the NC-action condition. The results suggest that the effect of contingency on electrophysiological indices of sensory attenuation may be indexed primarily by the Tb and P2 components, rather than the N1 component which is most commonly studied
Cross‐modal symbolic processing can elicit either an N2 or a protracted N2/N400 response
"This is the pre-peer reviewed version of the following article: Griffiths, O., Le Pelley, M. E., Jack, B. N., Luque, D., & Whitford, T. J. (2016). Cross-modal symbolic processing can elicit either an N2 or a protracted N2/N400 response. Psychophysiology, 53(7), 1044–1053. https://doi.org/10.1111/psyp.12649 , which has been published in final form at https://doi.org/10.1111/psyp.12649. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."A cross‐modal symbolic paradigm was used to elicit EEG activity related to semantic incongruence. Twenty‐five undergraduate students viewed pairings of visual lexical cues (e.g., DOG) with congruent (50% of trials) or incongruent (50%) auditory nonlexical stimuli (animal vocalizations; e.g., sound of a dog woofing or a cat meowing). In one condition, many different pairs of congruent/incongruent stimuli were shown, whereas in a second condition only two pairs of stimuli were repeatedly shown. A typical N400‐like pattern of incongruence‐related activity (including activity in the N2 time window) was evident in the condition using many stimuli, whereas the incongruence‐related activity in the two‐stimuli condition was confined to differential N2‐like activity. A supplementary analysis excluded stimulus characteristics as the source of this differential activity between conditions. We found that a single individual performing a fixed task can demonstrate either a protracted N400‐like pattern of activity or a more temporally focused N2‐like pattern of activity in response to the same stimulus, which suggests that the N2 may be a precursor to the protracted N400 response
Attenuation of visual evoked responses to hand and saccade-initiated flashes
Sensory attenuation refers to reduced brain responses to self-initiated sensations relative to those produced by the external world. It is a low-level process that may be linked to higher-level cognitive tasks such as reality monitoring. The phenomenon is often explained by prediction error mechanisms of universal applicability to sensory modality; however, it is most widely reported for auditory stimuli resulting from self-initiated hand movements. The present series of event-related potential (ERP) experiments explored the generalizability of sensory attenuation to the visual domain by exposing participants to flashes initiated by either their own button press or volitional saccade and comparing these conditions to identical, computer-initiated stimuli. The key results showed that the largest reduction of anterior visual N1 amplitude occurred for saccade-initiated flashes, while button press-initiated flashes evoked an intermediary response between the saccade-initiated and externally initiated conditions. This indicates that sensory attenuation occurs for visual stimuli and suggests that the degree of electrophysiological attenuation may relate to the causal likelihood of pairings between the type of motor action and the modality of its sensory response
Localized abnormalities in the cingulum bundle in patients with schizophrenia: A Diffusion Tensor tractography study
The cingulum bundle (CB) connects gray matter structures of the limbic system and as such has been implicated in the etiology of schizophrenia. There is growing evidence to suggest that the CB is actually comprised of a conglomeration of discrete sub-connections. The present study aimed to use Diffusion Tensor tractography to subdivide the CB into its constituent sub-connections, and to investigate the structural integrity of these sub-connections in patients with schizophrenia and matched healthy controls. Diffusion Tensor Imaging scans were acquired from 24 patients diagnosed with chronic schizophrenia and 26 matched healthy controls. Deterministic tractography was used in conjunction with FreeSurfer-based regions-of-interest to subdivide the CB into 5 sub-connections (I1 to I5). The patients with schizophrenia exhibited subnormal levels of FA in two cingulum sub-connections, specifically the fibers connecting the rostral and caudal anterior cingulate gyrus (I1) and the fibers connecting the isthmus of the cingulate with the parahippocampal cortex (I4). Furthermore, while FA in the I1 sub-connection was correlated with the severity of patients' positive symptoms (specifically hallucinations and delusions), FA in the I4 sub-connection was correlated with the severity of patients' negative symptoms (specifically affective flattening and anhedonia/asociality). These results support the notion that the CB is a conglomeration of structurally interconnected yet functionally distinct sub-connections, of which only a subset are abnormal in patients with schizophrenia. Furthermore, while acknowledging the fact that the present study only investigated the CB, these results suggest that the positive and negative symptoms of schizophrenia may have distinct neurobiological underpinnings
Healthcare providers' views on the acceptability of financial incentives for breastfeeding:a qualitative study
BACKGROUND: Despite a gradual increase in breastfeeding rates, overall in the UK there are wide variations, with a trend towards breastfeeding rates at 6–8 weeks remaining below 40% in less affluent areas. While financial incentives have been used with varying success to encourage positive health related behaviour change, there is little research on their use in encouraging breastfeeding. In this paper, we report on healthcare providers’ views around whether using financial incentives in areas with low breastfeeding rates would be acceptable in principle. This research was part of a larger project looking at the development and feasibility testing of a financial incentive scheme for breastfeeding in preparation for a cluster randomised controlled trial. METHODS: Fifty–three healthcare providers were interviewed about their views on financial incentives for breastfeeding. Participants were purposively sampled to include a wide range of experience and roles associated with supporting mothers with infant feeding. Semi-structured individual and group interviews were conducted. Data were analysed thematically drawing on the principles of Framework Analysis. RESULTS: The key theme emerging from healthcare providers’ views on the acceptability of financial incentives for breastfeeding was their possible impact on ‘facilitating or impeding relationships’. Within this theme several additional aspects were discussed: the mother’s relationship with her healthcare provider and services, with her baby and her family, and with the wider community. In addition, a key priority for healthcare providers was that an incentive scheme should not impact negatively on their professional integrity and responsibility towards women. CONCLUSION: Healthcare providers believe that financial incentives could have both positive and negative impacts on a mother’s relationship with her family, baby and healthcare provider. When designing a financial incentive scheme we must take care to minimise the potential negative impacts that have been highlighted, while at the same time recognising the potential positive impacts for women in areas where breastfeeding rates are low
Recommended from our members
Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: A combined ERP and DTI study
Background—Several theories of schizophrenia have emphasized the role of aberrant neural timing in the etiology of the disease, possibly as a consequence of conduction delays caused by structural damage to the white-matter fasciculi. Consistent with this theory, increased interhemispheric transmission times (IHTTs) to unilaterally-presented visual stimuli have been reported in patients with schizophrenia. The present study investigated whether or not these IHTT abnormalities could be underpinned by structural damage to the visual fibers of the corpus callosum. Methods—30 schizophrenia patients and 22 matched controls underwent Event Related Potential (ERP) recording, and a subset of 19 patients and 16 controls also underwent 3T Diffusion-Tensor Imaging (DTI). Unilateral visual stimuli (squares, 2 × 2 degrees) were presented 6 degrees lateral to either side of a central fixation point. IHTTs (ipsilateral minus contralateral latencies) were calculated for the P1 and N1 components at occipital-temporal sites in current source densitytransformed ERPs. The visual fibers of the corpus callosum were extracted with streamline tractography and the diffusion metrics of Fractional Anisotropy (FA) and Mode calculated. Results—While both subject groups exhibited highly significant IHTTs across a range of posterior electrode pairs, and significantly shorter IHTTs from left-to-right hemisphere than vice versa, no significant groupwise differences in IHTT were observed. However, participants’ IHTTs were linearly related to their FA and Mode, with longer IHTTs being associated with lower FA and more prolate diffusion ellipsoids. Conclusions—These results suggest that IHTTs are estimable from DTI measures of white matter integrity. In light of the range of diffusion abnormalities that have been reported in patients with schizophrenia, particularly in frontal fasciculi, these results support the conjecture that schizophrenia is ultimately underpinned by abnormalities in neural timing
- …