43 research outputs found

    GENERIC for dissipative solids with bulk-interface interaction

    Get PDF
    The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition functional derivatives we propose a GENERIC framework for systems with bulkinterface interaction and apply it to discuss the GENERIC structure of models for delamination processes

    Conductance of a quantum point contact in the presence of spin-orbit interaction

    Get PDF
    A recursive Green's function technique is developed to calculate the spin-dependent conductance in mesoscopic structures. Using this technique, we study the spin-dependent electronic transport of quantum point contacts in the presence of the Rashba spin-orbit interaction. We observed that some oscillations in the `quantized' conductance are induced by the spin-orbit interaction, and indicated that the oscillations may stem from the spin-orbit coupling associated multiple reflections. It is also indicated that the 0.7 structure of the conductance observed in mesoscopic experiments would not stem from the spin-orbit interaction.Comment: 8 page

    Quasiparticle dynamics in ballistic weak links under weak voltage bias: An elementary treatment

    Full text link
    A simple one-dimensional model for SNS weak links in the ballistic limit is presented. In the presence of a bias voltage, the quasiparticle state at any given instant of time is described as a superposition of that particular set of phase-dependent Andreev bound states that belongs to the specific phase difference present at this instant between the superconducting banks. The treatment -- basically a form of adiabatic perturbation theory -- has a strong formal similarity to the treatment of the k-space dynamics of an electron in a periodic potential under perturbation by an external electric field, sufficiently strong to cause transitions across the energy gaps between bands (Zener tunneling). It is shown that the quasiparticle wave function retains its phase information during analogous transitions between Andreev bands. The experimental observation of Shapiro steps at one-half the canonical voltage follows naturally from the model, along with some of the experimental properties of these steps, especially their much weaker temperature dependence, compared to the canonical steps.Comment: 21 pages, 3 figures, PDF format. To be published in Superlattices and Microstructures (Special issue on mesoscopic superconductivity

    Zero-field spin splitting in InAs-AlSb quantum wells revisited

    Full text link
    We present magnetotransport experiments on high-quality InAs-AlSb quantum wells that show a perfectly clean single-period Shubnikov-de Haas oscillation down to very low magnetic fields. In contrast to theoretical expectations based on an asymmetry induced zero-field spin splitting, no beating effect is observed. The carrier density has been changed by the persistent photo conductivity effect as well as via the application of hydrostatic pressure in order to influence the electric field at the interface of the electron gas. Still no indication of spin splitting at zero magnetic field was observed in spite of highly resolved Shubnikov- de Haas oscillations up to filling factors of 200. This surprising and unexpected result is discussed in view of other recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Orbital Decay in M82 X-2

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, https://creativecommons.org/licenses/by/4.0/M82 X-2 is the first pulsating ultraluminous X-ray source discovered. The luminosity of these extreme pulsars, if isotropic, implies an extreme mass transfer rate. An alternative is to assume a much lower mass transfer rate, but with an apparent luminosity boosted by geometrical beaming. Only an independent measurement of the mass transfer rate can help discriminate between these two scenarios. In this paper, we follow the orbit of the neutron star for 7 yr, measure the decay of the orbit ( Ṗorb/Porb≈−8·10−6yr−1 ), and argue that this orbital decay is driven by extreme mass transfer of more than 150 times the mass transfer limit set by the Eddington luminosity. If this is true, the mass available to the accretor is more than enough to justify its luminosity, with no need for beaming. This also strongly favors models where the accretor is a highly magnetized neutron star.Peer reviewe

    Methane Fluxes in Tidal Marshes of the Conterminous United States

    Get PDF
    Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre-industrial times. Wetlands account for a large share of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4 emissions. This effort included creating an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 m−2 year−1, with a median of 3.9 g CH4 m−2 year−1, and only 25% of sites exceeding 18 g CH4 m−2 year−1. The highest fluxes were observed at fresh-oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax \u3e19°C. Quantile regressions of paired chamber CH4 flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1 at sulfate concentrations \u3e4.7 ± 0.6 mM, porewater salinity \u3e21 ± 2 psu, or surface water salinity \u3e15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4 flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study provides data and methods to improve tidal marsh CH4 emission estimates, support blue carbon assessments, and refine national and global GHG inventories

    Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities.

    Get PDF
    Epidemiological and recent prospective analyses of long febrile seizures (FS) and febrile status epilepticus (FSE) support the idea that in some children, such seizures can provoke temporal lobe epilepsy (TLE). Because of the high prevalence of these seizures, if epilepsy was to arise as their direct consequence, this would constitute a significant clinical problem. Here we discuss these issues, and describe the use of animal models of prolonged FS and of FSE to address the following questions: Are long FS epileptogenic? What governs this epileptogenesis? What are the mechanisms? Are there any predictive biomarkers of the epileptogenic process, and can these be utilized, together with information about the mechanisms of epileptogenesis, for eventual prevention of the TLE that results from long FS and FSE
    corecore