44 research outputs found

    Hyperphosphatasia with mental retardation syndrome 3: Cerebrospinal fluid abnormalities and correction with pyridoxine and Folinic acid

    Get PDF
    Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of molecules attached to the external leaflet of the plasma membrane by the GPI anchor where they play important roles in numerous cellular processes including neurogenesis, cell adhesion, immune response and signalling. Within the group of GPI anchor defects, six present with the clinical phenotype of Hyperphosphatasia with Mental Retardation Syndrome (HPMRS, Mabry Syndrome) characterized by moderate to severe intellectual disability, dysmorphic features, hypotonia, seizures and persistent hyperphosphatasia. We report the case of a 5-year-old female with global developmental delay associated with precocious puberty and persistently raised plasma alkaline phosphatase. Targeted next generation sequencing analysis of the HPMRS genes identified novel compound heterozygous variants in the PGAP2 gene (c.103del p.(Leu35Serfs*90)and c.134A > Gp.(His45Arg)) consistent with the diagnosis of HPMRS type 3. Cerebrospinal fluid (CSF) neurotransmitter analysis showed low levels of pyridoxal phosphate and 5-methyltetrahydrofolate and raised homovanillic acid. Supplementation with pyridoxine and folinic acid led to normalization of biochemical abnormalities. The patient continues to make developmental progress with significant improvement in speech and fine motor skills. Our reported case expands the clinical spectrum of HPMRS3 in which multisystem involvement is being increasingly recognized. Furthermore, it shows that miss-targeting GPI-APs and the effect on normal cellular function could provide a physiopathologic explanation for the CSF biochemical abnormalities with management implications for a group of disorders that currently has no treatment that can lead possibly to improved clinical outcomes

    Primary ciliary dyskinesia with normal ultrastructure:three-dimensional tomography detects absence of DNAH11

    Get PDF
    In primary ciliary dyskinesia (PCD), motile ciliary dysfunction arises from ciliary defects usually confirmed by transmission electron microscopy (TEM). In 30% of patients, such as those with DNAH11 mutations, apparently normal ultrastructure makes diagnosis difficult. Genetic analysis supports diagnosis, but may not identify definitive causal variants. Electron tomography, an extension of TEM, produces three-dimensional ultrastructural ciliary models with superior resolution to TEM. Our hypothesis is that tomography using existing patient samples will enable visualisation of DNAH11-associated ultrastructural defects. Dual axis tomograms from araldite-embedded nasal cilia were collected in 13 PCD patients with normal ultrastructure (DNAH11 n=7, HYDIN n=2, CCDC65 n=3 and DRC1 n=1) and six healthy controls, then analysed using IMOD and Chimera software. DNAH11 protein is localised to the proximal ciliary region. Within this region, electron tomography indicated a deficiency of >25% of proximal outer dynein arm volume in all patients with DNAH11 mutations (n=7) compared to other patients with PCD and normal ultrastructure (n=6) and healthy controls (n=6). DNAH11 mutations cause a shared abnormality in ciliary ultrastructure previously undetectable by TEM. Advantageously, electron tomography can be used on existing diagnostic samples and establishes a structural abnormality where ultrastructural studies were previously normal

    Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is associated with abnormal organ positioning (situs) and congenital heart disease (CHD). This study investigated genotype–phenotype associations in PCD to facilitate risk predictions for cardiac and laterality defects. This retrospective cohort study of 389 UK patients with PCD found 51% had abnormal situs and 25% had CHD and/or laterality defects other than situs inversus totalis. Patients with biallelic mutations in a subset of nine PCD genes had normal situs. Patients with consanguineous parents had higher odds of situs abnormalities than patients with non-consanguineous parents. Patients with abnormal situs had higher odds of CHD and/or laterality defects

    Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort

    Get PDF
    Background Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests.Methods The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries.Results Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results.Conclusions This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening

    Mutations in Outer Dynein Arm Heavy Chain DNAH9 Cause Motile Cilia Defects and Situs Inversus

    Get PDF
    International audienceMotile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum

    C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD

    EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

    Get PDF
    Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0–49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease

    X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Get PDF
    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins

    Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis.

    Get PDF
    BACKGROUND: Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically diverse but phenotypically overlapping systemic inflammatory disorders associated with dysregulated innate immunity. They cause significant morbidity, mortality and economic burden. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene panel, the "Vasculitis and Inflammation Panel" (VIP) for AID and vasculitis. METHODS: The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113 genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16 samples on an Illumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised 22 positive control DNA samples from patients with previously validated mutations in a variety of the genes; and 50 prospective samples from patients with suspected AID in whom previous Sanger based genetic screening had been non-diagnostic. RESULTS: VIP was sensitive and specific at detecting all the different types of known mutations in 22 positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5 (clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant (class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagnosis in 16/50 patients (32%). CONCLUSIONS: The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate the use of broad NGS-based testing for patients with suspected AID
    corecore