



### University of Dundee

# C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia

Fassad, Mahmoud R.; Shoemark, Amelia; le Borgne, Pierrick; Koll, France; Patel, Mitali; Dixon, Mellisa; Hayward, Jane; Richardson, Charlotte; Frost, Emily; Jenkins, Lucy; Cullup, Thomas; Chung, Eddie M. K.; Lemullois, Michel; Aubusson-Fleury, Anne; Hogg, Claire; Mitchell, David R.; Tassin, Anne-Marie; Mitchison, Hannah M.

Published in: American Journal of Human Genetics

DOI: 10.1016/j.ajhg.2018.03.024

*Publication date:* 2018

Document Version Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

Fassad, M. R., Shoemark, A., le Borgne, P., Koll, F., Patel, M., Dixon, M., ... Mitchison, H. M. (2018). C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. American Journal of Human Genetics, 102(5), 956-972. https://doi.org/10.1016/j.ajhg.2018.03.024

#### **General rights**

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

· You may not further distribute the material or use it for any profit-making activity or commercial gain.

· You may freely distribute the URL identifying the publication in the public portal.

| Homo            | 1 MATGELGDLGGYYFRFLPQKTFQSLSSKEITSRLRQWSMLGRIKAQAFG                                                                     | FDQ                |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|--------------------|
| Bos             | 1 MAAGEPGDIGVYSFRFLPQKTFQSLSTPQTTSRLRQWSMLGRIEAQAFG                                                                     | FDQ                |
| Mus             | 1 MAAGEPRDGGGYYFRFLPHRTFSSLSAREITSRLRQWSMLGRIQAQAFS                                                                     | FDQ                |
| Rattus          | 1 MATGEPRDRGGYYFRFLPQRTFSSLSAREITNRLRQWSMLGRIQAQAFG                                                                     | FDQ                |
| Xenopus         | 1 MSAGSFSTEAAKFSFSPILNKTFGFLINRDTRELIMKWSMNGRITAQAFR                                                                    | Υ <mark>D</mark> E |
| Danio           | 1 MVTTTIGIMAEEKLSFEQTENENLLSTKSENFQEDPKTSRLLMKWSMLGRITAQAEN                                                             | FDQ                |
| Chlamydomonas   | 1 MTAFVPVSLPSTSALNDAYVKSQLTKWD LRN RCVAVR                                                                               | ΥTK                |
| Paramecium      | 1 MQIESDNQVTNQSYSFFRQE-NIIDDKKFMEIDQKWGDQHSIKVSTFL                                                                      | FDI                |
|                 |                                                                                                                         |                    |
| TT              |                                                                                                                         |                    |
| HOIIIO<br>Dan   | 53 TEQSIRCDEF WAFFECPENTICULAUS SSGQWIILGIEVENIEAINVPCIQUSMS                                                            |                    |
| BOS             | 53 TFQAIRKDDFVTAFFKDPNVIPNLKLLSFSSGEWLTLGTEVKKIEAINVPCTQLSMS                                                            | EEN                |
| Mus             | 53 TFQPYQKDDFVMAFFKDPNVIPNLQLLSDSSGQWTTLGBEVKKILAINVPCTQLSMS                                                            | ΓFQ                |
| Rattus          | 53 TFQPYQKDDFVTAFFKDPNVIPHLQLLAFSSGQWTTLGTEVKRIEAINVPCTQLSMS                                                            | ΕΕQ                |
| Xenopus         | 54 CFQPYQKNDFVWAFFQDPDV SHIK VSENSGQWVILGTKVKKV VQE LOSQLSMS                                                            | LED                |
| Danio           | 61 SEQPYRSNDFAWNFFQDPCVKHNLNVLD-PTGSWTRLC-DLTHVNVEVVPCLKVSVD                                                            | IED                |
| Chlamydomonas   | 43 Y HKLOGQ L ADLF DEKVQEAFQVURK-GGAWGQLCGPVTKV ATL AS LTRND                                                            | LFD                |
| Paramecium      | 52 KEDHL PNOF LDLENSKDVRGSLHYVSF-K-QNVL SQIKFQP TCKS K D                                                                | LFD                |
|                 |                                                                                                                         |                    |
| Homo            | 113 RLYDEDIVRDSGHIVKCLDSFCDPFLISDELRRVLLVEDSEKYEIFSOPDREEFL                                                             | FCL                |
| Bos             | 13 RIYDE – AUVRONGYTVKCHOSECOPETTSDEHRKVILVEDSEKYEVES                                                                   | FCL                |
| Mus             | 13 RLYDE NTVRESGHTVKCLDSFCDPFLTSDELRKVLLMEDSEKYEVFS                                                                     | FCL                |
| Rattus          | 13 RLYDE NIVRESGHIVKCLDSFCDPFLISDELRKVLIMEDSEKYEVFSPVEREEFI                                                             | FCL                |
| Xenopus         | 14 CLYSEGUVRESGHICKCLDEYLDDFTTSDELRKVLLLDDCEKHDVFSOSDREOFL                                                              | DT.D               |
| Danio           | 19 PUYSNGURPSGHUVKOYHETYPDPDEURM IJEADSPYHHUTSPSDBODEU                                                                  | FRT                |
| Chlamydomonas   | 102 KUTPTSPPTVBSNGDIGKOMPDNREGDOVSDOLBEL UVEPSEHAALESEAPROPIL                                                           | R                  |
| Paramecium      | 106 KUTED KUVV-KGHUKOOFECOFENTOUADEURKAUVUEDSEOMOVENEADBOETU                                                            | PKT                |
| r ar anno or an |                                                                                                                         |                    |
|                 |                                                                                                                         |                    |
| Homo            | 171 FKHLCLGGALCQYEDVI <mark>S</mark> PYLETTKLIYKDLVSVRK <mark>N</mark> PQTK <mark>K</mark> IQITSSVFKVSAYDS              | -AG                |
| Bos             | 171 FKHLCLGGALCQYEDVI <mark>N</mark> PYLETTKLIYKDLVSVRK <mark>N</mark> PQTK <mark>K</mark> IQITSSIFKVTAYDS              | -VG                |
| Mus             | 171 FKHLCLGG <mark>SLCQYEDV K</mark> PYLET <mark>AKLIYKDLVSVRK</mark> HPRTKEIQITSSVFKVKAYDS                             | -VG                |
| Rattus          | 171 FKHLCLGG <mark>SLCQYEDVIK</mark> PYLET <mark>AKLIYKDLVSVRKH</mark> PRTKEIQITSSVFKVKAYDS                             | -LG                |
| Xenopus         | 172 FKHLCLGGAICQFEDTIGPYLETTKSIYKDLISVQKDPETKQIRIISTVFKVSAYDE                                                           | -NG                |
| Danio           | 174 FKHYVLGGELCQYEDVIDPYLETVKIMYKDLVSVQKDTDTKEINVVTTVLKVSAYDH                                                           | -SG                |
| Chlamydomonas   | 162 FEHVVIGGACCOFEDKVEPYVETSKRIYKEIVCAQKDPATGKVQTVSAVYKINSIQG                                                           | DSG                |
| Paramecium      | 163 FQI <mark>IVLGGQLCQYED</mark> EIQA <mark>YLDWTK</mark> YI <mark>YK</mark> NT <mark>VNARK</mark> YADKDETYIDSYAYDIRKL |                    |
|                 |                                                                                                                         |                    |
|                 |                                                                                                                         |                    |
| Homo            | 230 WOYPSAKNHEQTESYFIVDPIRRHIHVLYHCYGVGDMS                                                                              |                    |
| Bos             | 2.30 V <b>OYPS</b> TKS <b>HEQTESYE</b> T <b>VDPTKRHV</b> HVDYHCYGMCEVS                                                  |                    |
| Mus             | 230 VCYPSPKEHEQTFSYFVVDPIKRHVNVLYHCYGVCHMA                                                                              |                    |
| Rattus          | 230 VOYESPKEHEQTESYFVVDPIKRHVNVLYHCYGVCEMA                                                                              |                    |
| Xenopus         | 231 MCYPSGRPHQOTEANL VDP KRHVYVLYHC GGCA-F                                                                              |                    |
| Danio           | 233 CYPSATENKOTEANLCEDECKRHVYVLEHSEGECEFSGN                                                                             |                    |
| Chlamydomonas   | 222 PLELYPSRSRONDCYAAVDEVERIVK LYHAYVPYW                                                                                |                    |
| Paramecium      | 218 - ENSYSSDHPONVMYVVVNESLRIVNI ENQALKVW                                                                               |                    |

Figure S1. Cross species protein alignment for C11orf70



Figure S2. Quantification of TEM analysis of outer and inner dynein arm loss in affected individuals with *C11orf70* mutations



**Figure S3. Successful RNAi ablation of** *C11orf70* **shown in** *Paramecium* **transformed with GFP-tagged C11orf70.** *ND7-* (control) and *C11orf70-* silenced Paramecia were fixed and visualised for C11orf70-GFP protein expression after 72h of RNAi. Scale bars, 10 µm.



**Figure S4. Depletion of** *C11orf70* **in** *Paramecium* **does not affect cilia number and length**. *ND7* (control) and *C11orf70* silenced Paramecia were fixed and stained for cilia after 72h of RNAi. Cilia were stained using anti - polyglutamylated tubulin antibodies to indicate the cilia (PolyE). Scale bars, 20 µm.



Figure S5. *Chlamydomonas* FBB5 is expressed at similar levels in a number of mutant *Chlamydomonas* strains. Amido black stained gels shows equivalent protein in strains with mutations in proteins shown in Figure 5, main text.

| Primer ID                                                                                  | (5'- Sequence -3')                            |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|
| Sanger sequencing for c.776A>G mutation                                                    |                                               |  |  |  |  |  |  |
| Fwd                                                                                        | GATCCTATCAGGCGTCACCTT                         |  |  |  |  |  |  |
| Rev                                                                                        | ATCCCCGGTTAGTATTCCACAC                        |  |  |  |  |  |  |
| Sanger sequencing for c.154C>T mutation                                                    |                                               |  |  |  |  |  |  |
| Fwd                                                                                        | GCCAGCCCCCAGATGATTT                           |  |  |  |  |  |  |
| Rev                                                                                        | GAGACCCAGGGAACTCTCCG                          |  |  |  |  |  |  |
| Sanger sequencing for c.361C>T mutation                                                    |                                               |  |  |  |  |  |  |
| Fwd                                                                                        | GTTCCTTGCACACAGCTTTCAA                        |  |  |  |  |  |  |
| Rev                                                                                        | TCCTGAAATAAAATTCCACTGCGA                      |  |  |  |  |  |  |
| q(RT-PCR) for expression profiling of C11orf70 in ALI culture                              |                                               |  |  |  |  |  |  |
| C11orf70-Fwd                                                                               | TGGGTGGCTACTACTTCAGGT                         |  |  |  |  |  |  |
| C11orf70-Rev                                                                               | GCCTTGATTCTGCCCAGCAT                          |  |  |  |  |  |  |
| DNAH5-Fwd                                                                                  | TGCAGATGCCATGGTTCACT                          |  |  |  |  |  |  |
| DNAH5-Rev                                                                                  | ATGAAGCCAACCTCGTCAGG                          |  |  |  |  |  |  |
| GAPDH-Fwd                                                                                  | TGCACCACCAACTGCTTAGC                          |  |  |  |  |  |  |
| GAPDH-Rev                                                                                  | GGCATGGACTGTGGTCATGAG                         |  |  |  |  |  |  |
| 561bp segment of Paramec                                                                   | ium GSPATG00011350001 for RNAi design         |  |  |  |  |  |  |
| Fwd                                                                                        | TAGAACTAGTATGTAAATTGAATCAGACAATTAAGTTAC       |  |  |  |  |  |  |
| Rev                                                                                        | TTTTTTCTCGAGCTTTGTCCAATCTAAATAGGCTTG          |  |  |  |  |  |  |
| q(RT-PCR) for GSPATG000 <sup>2</sup>                                                       | 11350001 knockdown in <i>Paramecium</i>       |  |  |  |  |  |  |
| GSPATG00011350001-F                                                                        | TGCTCGAAAATATGCAGATAAGGA                      |  |  |  |  |  |  |
| GSPATG00011350001-R                                                                        | TGATGGGTTCACAACGACAT                          |  |  |  |  |  |  |
| GAPDH-Fwd                                                                                  | GAGAGCCGGAAGAGCTGCTA                          |  |  |  |  |  |  |
| GAPDH-Rev                                                                                  | TGGTGGAACTCTGAAGGCCATA                        |  |  |  |  |  |  |
| Amplification of Paramecium GSPATG00011350001 (C11orf70) for GFP expression vector cloning |                                               |  |  |  |  |  |  |
| Fwd                                                                                        | TAGAACTAGTATGTAAATTGAATCAGACAATTAAGTTAC       |  |  |  |  |  |  |
| Rev                                                                                        | TTTTTCTCGAGTCCTCCTCCCCATACTTTTAACCATTAGTTTTCT |  |  |  |  |  |  |
| Amplification of Paramecium GSPATG00024708001 (IFT46) for GFP expression vector cloning    |                                               |  |  |  |  |  |  |
| Regulator-Fwd                                                                              | ATACTTGGATCCTATTTAATATAATTAAATAAATACTGTTATTC  |  |  |  |  |  |  |
| Regulator-Rev                                                                              | GACAAAACAATGATGAAATTTAAGGCATGCAAGTAT          |  |  |  |  |  |  |
| GSPATG00024708001-F                                                                        | ATACTTGGTACCTGAATATTCAATAATATAACATTATTTC      |  |  |  |  |  |  |
| GSPATG00024708001-R                                                                        | GGAATATTTATTATAATTATTAA                       |  |  |  |  |  |  |

Table S1. Primers

# used in the study

| Antigen                  | Antibody      | Host       | Source                | Application  |
|--------------------------|---------------|------------|-----------------------|--------------|
|                          |               | species    |                       |              |
| DNAH5                    | HPA037470     | Rabbit     | Sigma-Aldrich         | IF (1:800)   |
| DNALI1                   | HPA053129     | Rabbit     | Sigma-Aldrich         | IF (1:200)   |
| RSPH4A                   | HPA031196     | Rabbit     | Sigma-Aldrich         | IF (1:400)   |
| GAS8                     | HPA041311     | Rabbit     | Sigma-Aldrich         | IF (1:500)   |
| Acetylated Tubulin       | T7451         | Mouse      | Sigma-Aldrich         | IF (1:500)   |
| Acetylated Tubulin       | YF488         | Mouse      | Proteintech           | IF (1:500)   |
| Polyglutamylated Tubulin | PolyE         | Rabbit     | A gift from J. Cohen  | IF (1:500)   |
| GFP                      | IgG           | Rabbit     | Interchim, France     | IF (1:500)   |
| НА                       | McAb 3F10     | Rat        | Roche, Indianapolis   | IB (1:1000)  |
| Chlamydomonas IFT46C     | α-IFT46C404   | Guinea Pig | A gift from G. Witman | IB (1:10000) |
| Chlamydomonas IFT46N     | α-IFT46-17601 | Rabbit     | A gift from H. Qin    | IB (1:5000)  |
| Chlamydomonas IFT81      | 81.3          | Mouse      | A gift from D. Cole   | IB (1:10000) |
| Chlamydomonas IFT139     | 139.1         | Mouse      | A gift from D. Cole   | IB (1:10000) |
| Chlamydomonas IC2        | C11.4         | Mouse      | DRM lab               | IB (1:2000)  |
| Chlamydomonas ODA16      | α-ODA16-927   | Rabbit     | DRM lab               | IB (1:100)   |

## Table S2: Primary antibodies used in the study

| Antibody                                             | Host Species | Source                        | Application |
|------------------------------------------------------|--------------|-------------------------------|-------------|
| Alexa 488, 594 – conjugated anti-rabbit<br>IgG (H+L) | Goat         | Invitrogen (Molecular Probes) | IF (1:1000) |
| Alexa 488, 594 – conjugated<br>Anti-mouse IgG1       | Goat         | Invitrogen (Molecular Probes) | IF (1:1000) |
| HRP-conjugated Anti-mouse IgG                        | Goat         | BioRad                        | IB (1:2000) |
| HRP-conjugated Anti-rabbit IgG                       | Goat         | Sigma-Aldrich                 | IB (1:2000) |
| HRP-conjugated Anti-guinea Pig IgG                   | Goat         | Rockland                      | IB (1:1000) |
| HRP-conjugated Anti-rat IgG                          | Goat         | Sigma-Aldrich                 | IB (1:5000) |

Table S3: Secondary antibodies used in the study