177 research outputs found

    Vibrational excitation of diatomic molecular ions in strong-field ionization of diatomic molecules

    Full text link
    A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse.Comment: 4 pages, 4 figure

    Influence of molecular symmetry on strong-field ionization: Studies on ethylene, benzene, fluorobenzene, and chlorofluorobenzene

    Full text link
    Using the molecular strong-field approximation we consider the effects of molecular symmetry on the ionization of molecules by a strong, linearly polarized laser pulse. Electron angular distributions and total ionization yields are calculated as a function of the relative orientation between the molecule and the laser polarization. Our studies focus on ethylene (C2_2H4_4), benzene (C6_6H6_6), fluorobenzene (C6_6H5_5F), and ortho chlorofluorobenzene (1,2 C6_6H4_4ClF), the molecules representing four different point groups. The results are compared with experiments, when available, and with the molecular tunneling theory appropriately extended to non-linear polyatomic molecules. Our investigations show that the orientational dependence of ionization yields is primarily determined by the nodal surface structure of the molecular orbitals.Comment: 13 pages, 10 figures. Submitted to Physical Review

    Purifying Selection and Molecular Adaptation in the Genome of Verminephrobacter, the Heritable Symbiotic Bacteria of Earthworms

    Get PDF
    While genomic erosion is common among intracellular symbionts, patterns of genome evolution in heritable extracellular endosymbionts remain elusive. We study vertically transmitted extracellular endosymbionts (Verminephrobacter, Betaproteobacteria) that form a beneficial, species-specific, and evolutionarily old (60–130 Myr) association with earthworms. We assembled a draft genome of Verminephrobacter aporrectodeae and compared it with the genomes of Verminephrobacter eiseniae and two nonsymbiotic close relatives (Acidovorax). Similar to V. eiseniae, the V. aporrectodeae genome was not markedly reduced in size and showed no A–T bias. We characterized the strength of purifying selection (ω = dN/dS) and codon usage bias in 876 orthologous genes. Symbiont genomes exhibited strong purifying selection (ω = 0.09 ± 0.07), although transition to symbiosis entailed relaxation of purifying selection as evidenced by 50% higher ω values and less codon usage bias in symbiont compared with reference genomes. Relaxation was not evenly distributed among functional gene categories but was overrepresented in genes involved in signal transduction and cell envelope biogenesis. The same gene categories also harbored instances of positive selection in the Verminephrobacter clade. In total, positive selection was detected in 89 genes, including also genes involved in DNA metabolism, tRNA modification, and TonB-dependent iron uptake, potentially highlighting functions important in symbiosis. Our results suggest that the transition to symbiosis was accompanied by molecular adaptation, while purifying selection was only moderately relaxed, despite the evolutionary age and stability of the host association. We hypothesize that biparental transmission of symbionts and rare genetic mixing during transmission can prevent genome erosion in heritable symbionts

    Microbial community assembly and evolution in subseafloor sediment

    Get PDF
    Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the > 5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, therewas no detectable change inmutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur

    Accurate fundamental parameters for 23 bright solar-type stars

    Full text link
    We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III to V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4-15 percent. From indirect methods we determine luminosity and radius to 3 percent. For Teff we find a slight offset of -40+-20 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine vsini and we present a new calibration of macro- and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log g, and [Fe/H] with absolute accuracies of 80 K, 0.08 dex, and 0.07 dex. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. Our study is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.Comment: Accepted by MNRAS. Abstract abridge

    A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    Full text link
    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.Comment: 12 pages, 2 figures, submitted to the Astrophysical Journal Letter
    corecore