143 research outputs found

    Discovery of meteorites on a blue-ice field near the Frontier Mountains, North Victoria Land, Antarctica

    Get PDF
    A high concentration of meteorites were discovered on a blue ice field northeast of the Frontier Mountains. As a result of a systematic search, a total of 42 meteorites were recovered. The current glacial situation has evolved through various stages, which are discussed in relationship to the concentration of meteorites. Ice flow patterns are summarized. The chemical composition and terrestrial ages of the meteorites are discussed

    Pan-embryo cell dynamics of germlayer formation in zebrafish

    Get PDF
    Cell movements are coordinated across spatio-temporal scales to achieve precise positioning of organs during vertebrate gastrulation. In zebrafish, mechanisms governing such morphogenetic movements have so far only been studied within a local region or a single germlayer. Here, we present pan-embryo analyses of fate specification and dynamics of all three germlayers simultaneously within a gastrulating embryo, showing that cell movement characteristics are predominantly determined by its position within the embryo, independent of its germlayer identity. The spatially confined fate specification establishes a distinct distribution of cells in each germlayer during early gastrulation. The differences in the initial distribution are subsequently amplified by a unique global movement, which organizes the organ precursors along the embryonic body axis, giving rise to the blueprint of organ formation

    Age and Intrinsic Fitness Affect the Female Rotator Cuff Tendon Tissue

    Get PDF
    The risk of the development of tendon disorders or ruptures increases with age, but it is unclear whether intrinsic fitness during lifetime might also affect tendon properties. To investigate this, a contrasting rat model of high-capacity runners (HCR with high intrinsic fitness) and low-capacity runners (LCR with low intrinsic fitness) was employed. Histological and molecular changes in rotator cuff (RC) tendons from 10 weeks old (young; HCR-10 and LCR-10) and 100 weeks old (old; HCR-100 and LCR-100) female rats were investigated. Age-dependent changes of RC tendons observed in HCR and LCR were increase of weight, decrease of tenocytes and RNA content, reduction of the wavy pattern of collagen and elastic fibers, repressed expression of Col1a1 , Eln , Postn , Tnmd , Tgfb3 and Egr1 and reduction of the Col1 : Col3 and Col1 : Eln ratio. The LCR rats showed less physical activity, increased body weight, signs of metabolic disease and a reduced life expectancy. Their RC tendons revealed increased weight (more than age-dependent) and enlargement of the tenocyte nuclei (consistent with degenerative tendons). Low intrinsic fitness led to repressed expression of a further nine genes ( Col3a1 , Fbn1 , Dcn , Tnc , Scx , Mkx , Bmp1 , Tgfb1 , Esr1 ) as well as the rise of the Col1 : Col3 and Col1:Eln ratios (related to the lesser expression of Col3a1 and Eln ). The intrinsic fitness influences the female RC tendons at least as much as age. Lower intrinsic fitness accelerates aging of RC tendons and leads to further impairment; this could result in decreased healing potential and elasticity and increased stiffness

    The Coma cluster magnetic field from Faraday rotation measures

    Full text link
    The aim of the present work is to constrain the Coma cluster magnetic field strength, its radial profile and power spectrum by comparing Faraday Rotation Measure (RM) images with numerical simulations of the magnetic field. We have analyzed polarization data for seven radio sources in the Coma cluster field observed with the Very Large Array at 3.6, 6 and 20 cm, and derived Faraday Rotation Measures with kiloparsec scale resolution. Random three dimensional magnetic field models have been simulated for various values of the central intensity B_0 and radial power-law slope eta, where eta indicates how the field scales with respect to the gas density profile. We derive the central magnetic field strength, and radial profile values that best reproduce the RM observations. We find that the magnetic field power spectrum is well represented by a Kolmogorov power spectrum with minimum scale ~ 2 kpc and maximum scale ~ 34 kpc. The central magnetic field strength and radial slope are constrained to be in the range (B_0=3.9 microG; eta=0.4) and (B_0=5.4 microG; eta=0.7) within 1sigma. The best agreement between observations and simulations is achieved for B_0=4.7 microG; eta=0.5. Values of B_0>7 microG and 1.0 are incompatible with RM data at 99 % confidence level.Comment: 23 pages, 21 figures. Higher resolution available at http://www.ira.inaf.it/~bonafede/paper.pdf. A&A accepte

    Where does the hard X-ray diffuse emission in clusters of galaxies come from?

    Full text link
    The surface brightness produced by synchrotron radiation in Clusters of Galaxies with a radio-halo sets a degenerate constraint on the magnetic field strength, the relativistic electron density and their spatial distributions. Using the Coma radio-halo as a case-study, predictions are made for the brightness profile expected in the 20-80 keV band due to ICS by the relativistic electrons on the CMB, for a range of central values of the magnetic field B_0 and models of its radial dependence. We show that the presence of B-field scalar fluctuations on small scales tends to systematically depress the electron density required by the radio data, hence to decrease the ICS brightness expected. These predictions are useful to evaluate the sensitivity required in future imaging HXR instruments, in order to obtain direct information on the spatial distribution and content of relativistic electrons, hence on the magnetic field properties. If compared with the flux in the Coma HXR tail - interpreted as ICS from within the radius R_h - the predictions lead to values of B_0 which are lower than those obtained from Faraday Rotation measurements. The discrepancy is somewhat reduced if the radio-halo profile is extrapolated out to R_{vir}, i.e. about 3 R_h, or if it is assumed that B(r) \propto n_{th}(r) (Dolag et al. 2002). Note that in the latter case, n_{rel}(r) has its minimum value at the center of the cluster. If real and from ICS, the bulk of the HXR tail should then be contributed by electrons other than those responsible for the bulk of the radio-halo emission. This case illustrates the need for spatially resolved spectroscopy in the HXR, in order to obtain solid information on the non-thermal content of Clusters of Galaxies.Comment: 11 pages, 13 figures, A&A in pres

    Radio Halos From Simulations And Hadronic Models II: The Scaling Relations of Radio Halos

    Full text link
    We use results from a constrained, cosmological MHD simulation of the Local Universe to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from star-burst driven, galactic outflows. We evaluate three models, where we choose different normalizations for the Cosmic Ray proton population within clusters. Similar to our previous analysis of the Coma cluster (Donnert et al. 2010), the radial profile and the morphological properties of observed radio halos can not be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models, however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavored to reproduce the large scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of γ\gamma-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in γ\gamma-ray emission, emphasizing that large scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters

    Variable Expression of Cre Recombinase Transgenes Precludes Reliable Prediction of Tissue-Specific Gene Disruption by Tail-Biopsy Genotyping

    Get PDF
    The Cre/loxP-system has become the system of choice for the generation of conditional so-called knockout mouse strains, i.e. the tissue-specific disruption of expression of a certain target gene. We here report the loss of expression of Cre recombinase in a transgenic mouse strain with increasing number of generations. This eventually led to the complete abrogation of gene expression of the inserted Cre cDNA while still being detectable at the genomic level. Conversely, loss of Cre expression caused an incomplete or even complete lack of disruption for the protein under investigation. As Cre expression in the tissue of interest in most cases cannot be addressed in vivo during the course of a study, our findings implicate the possibility that individual tail-biopsy genotypes may not necessarily indicate the presence or absence of gene disruption. This indicates that sustained post hoc analyses in regards to efficacy of disruption for every single study group member may be required

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    Radio Halos From Simulations And Hadronic Models I: The Coma cluster

    Full text link
    We use the results from a constrained, cosmological MHD simulation of the Local Universe to predict the radio halo and the gamma-ray flux from the Coma cluster and compare it to current observations. The simulated magnetic field within the Coma cluster is the result of turbulent amplification of the magnetic field during build-up of the cluster. The magnetic seed field originates from star-burst driven, galactic outflows. The synchrotron emission is calculated assuming a hadronic model. We follow four approaches with different distributions for the cosmic-ray proton (CRp) population within galaxy clusters. The radial profile the radio halo can only be reproduced with a radially increasing energy fraction within the cosmic ray proton population, reaching >>100% of the thermal energy content at \approx 1Mpc, e.g. the edge of the radio emitting region. Additionally the spectral steepening of the observed radio halo in Coma cannot be reproduced, even when accounting for the negative flux from the thermal SZ effect at high frequencies. Therefore the hadronic models are disfavored from present analysis. The emission of γ\gamma-rays expected from our simulated coma is still below the current observational limits (by a factor of \sim6) but would be detectable in the near future.Comment: Submitted to MNRAS, 5pages, 3 figures, 1 tabl

    On the evolution of giant radio halos and their connection with cluster mergers

    Full text link
    Giant radio halos are diffuse, Mpc-scale, synchrotron sources located in the central regions of galaxy clusters and provide the most relevant example of cluster non-thermal activity. Radio and X-ray surveys allow to investigate the statistics of halos and may contribute to constrain their origin and evolution. We investigate the distribution of clusters in the plane X-ray (thermal, L_X) vs synchrotron (P_{1.4})luminosity, where clusters hosting giant radio halos trace the P_{1.4}--L_X correlation and clusters without radio halos populate a region that is well separated from that spanned by the above correlation. The connection between radio halos and cluster mergers suggests that the cluster Mpc-scale synchrotron emission is amplified during these mergers and then suppressed when clusters become more dynamically relaxed. In this context, by analysing the distribution in the P_{1.4}--L_X plane of clusters from X-ray selected samples with adequate radio follow up, we constrain the typical time-scale of evolution of diffuse radio emission in clusters and discuss the implications for the origin of radio halos. We conclude that cluster synchrotron emission is suppressed (and amplified) in a time-scale significantly smaller than 1 Gyr. We show that this constraint appears difficult to reconcile with the hypothesis that the halo's radio power is suppressed due to dissipation of magnetic field in galaxy clusters. On the other hand, in agreement with models where turbulent acceleration plays a role, present constraints suggest that relativistic electrons are accelerated in Mpc-scale regions, in connection with cluster mergers and for a time-interval of about 1 Gyr, and then they cool in a relatively small time-scale, when the hosting cluster becomes more dynamically relaxed.Comment: 11 pages, 5 figure, to appear in Astronomy & Astrophysics, 2 typos in references corrected, last sentence at the end of Sect.2 modifie
    corecore