75 research outputs found

    A survey of freshwater gastropods in the Microrregião Serrana of the State of Rio de Janeiro, Brazil

    Full text link
    In 1984 we received samples of freshwater gastropods from many localities of the State of Rio de Janeiro, sent by Fundação Nacional de Saúde for identification. In the past three years, aiming to elaborate a chart of planorbids of the State of Rio de Janeiro additional collecting was done by the authors in the area corresponding to the Microrregião Serrana of the state: Petrópolis, Teresópolis and São José do Vale do Rio Preto. The survey was extended to the neighbour towns, Guapimirim and Magé, in order to improve the knowledge of that poorly studied area

    Primeiro registro do gastrópode africano invasor Melanoides tuberculatus (Gastropoda: Prosobranchia: Thiaridae) na Bacia do Rio Paranã, GO, Brasil

    Get PDF
    The Thiarid snail Melanoides tuberculatus (Müller, 1774), native to Asia and East Africa was recorded for the first time in the Paranã River basin, Goiás State. There is no evidence concerning introduction vectors but aquarium releases is the most probable vector. Specimens were collected at three different water bodies after twenty-seven rivers were investigated. The possible spread of this species to other habitats and potential effects on native thermal water communities are discussed.O gastrópode Thiaridae Melanoides tuberculatus (Müller, 1774), nativo da Ásia e do Leste Africano, é registrado pela primeira vez na Bacia Hidrográfica do Rio Paranã (Estado de Goiás). Não se conhecem os vetores de introdução da espécie, mas o setor de aquariofilia foi apontado por alguns moradores locais como a mais provável causa. Os espécimes foram coletados em três corpos d´água depois de serem investigados vinte e sete rios e lagoas. A possibilidade de dispersão dessa espécie para outros habitats e os efeitos potenciais dessa introdução sobre a comunidade nativa são discutidos no artigo

    Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    Get PDF
    Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context

    The effects of ball possession status on physical and technical indicators during the 2014 FIFA World Cup Finals.

    Get PDF
    This study examined the effect of high- (HPBPT) and low-percentage ball possession (LPBPT) on physical and technical indicators during 2014 FIFA World Cup matches. This would enable a regression model to be constructed to further understand the impact of different ball possession (BP) strategies on match performance. Data were collected from 346 international soccer players using a multiple-camera computerised tracking system. Although players in HPBPT covered lower distances (P 0.05) at medium and high speeds. Players in LPBPT covered more distance without BP but less with BP than HPBPT (P < 0.01; ES large). All positions in LPBPT spent less time in the opposing half and attacking third than the players in HPBPT (P < 0.01; ES small-moderate), but all positions in HPBPT completed more short and medium passes than LPBPT (P < 0.01; ES moderate). Players in HPBPT produced more solo runs into the attacking third and penalty area than LPBPT (P < 0.05, ES small). The equation to predict BP from physical and technical indicators highlighted the importance of distances covered (total, with and without BP), time spent in the attacking third and successful short passes during matches. In practical terms, high or low BP does not influence the activity patterns of international matches although HPBPT spend more time in offensive areas of the pitch

    Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) induces global transcriptional deregulation and ultrastructural alterations that impair viability in Schistosoma mansoni

    Get PDF
    Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors
    corecore