136 research outputs found

    From stellar nebula to planetesimals

    Full text link
    Solar and extrasolar comets and extrasolar planets are the subject of numerous studies in order to determine their chemical composition and internal structure. In the case of planetesimals, their compositions are important as they govern in part the composition of future planets. The present works aims at determining the chemical composition of icy planetesimals, believed to be similar to present day comets, formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data on chemical composition for models of planetesimals and comets, and models of planet formation and evolution. We have developed a model that calculates the composition of ices formed during the cooling of the stellar nebula. Coupled with a model of refractory element formation, it allows us to determine the chemical composition and mass ratio of ices to rocks in icy planetesimals throughout in the protoplanetary disc. We provide relationships for ice line positions (for different volatile species) in the disc, and chemical compositions and mass ratios of ice relative to rock for icy planetesimals in stellar systems of solar chemical composition. From an initial homogeneous composition of the nebula, a wide variety of chemical compositions of planetesimals were produced as a function of the mass of the disc and distance to the star. Ices incorporated in planetesimals are mainly composed of H2O, CO, CO2, CH3OH, and NH3. The ice/rock mass ratio is equal to 1+-0.5 in icy planetesimals following assumptions. This last value is in good agreement with observations of solar system comets, but remains lower than usual assumptions made in planet formation models, taking this ratio to be of 2-3

    Elemental ratios in stars vs planets

    Full text link
    Context. The chemical composition of planets is an important constraint for planet formation and subsequent differentiation. While theoretical studies try to derive the compositions of planets from planet formation models in order to link the composition and formation process of planets, other studies assume that the elemental ratios in the formed planet and in the host star are the same. Aims. Using a chemical model combined with a planet formation model, we aim to link the composition of stars with solar mass and luminosity with the composition of the hosted planets. For this purpose, we study the three most important elemental ratios that control the internal structure of a planet: Fe/Si, Mg/Si, and C/O. Methods. A set of 18 different observed stellar compositions was used to cover a wide range of these elemental ratios. The Gibbs energy minimization assumption was used to derive the composition of planets, taking stellar abundances as proxies for nebular abundances, and to generate planets in a self-consistent planet formation model. We computed the elemental ratios Fe/Si, Mg/Si and C/O in three types of planets (rocky, icy, and giant planets) formed in different protoplanetary discs, and compared them to stellar abundances. Results. We show that the elemental ratios Mg/Si and Fe/Si in planets are essentially identical to those in the star. Some deviations are shown for planets that formed in specific regions of the disc, but the relationship remains valid within the ranges encompassed in our study. The C/O ratio shows only a very weak dependence on the stellar value.Comment: 8 pages, 5 figures, 3 tables. Accepted for publication in A&

    From stellar nebula to planets: the refractory components

    Full text link
    We computed the abundance of refractory elements in planetary bodies formed in stellar systems with solar chemical composition by combining models for chemical composition and planet formation. We also consider the formation of refractory organic compounds, which have been ignored in previous studies on this topic. We used the commercial software package HSC Chemistry in order to compute the condensation sequence and chemical composition of refractory minerals incorporated into planets. The problem of refractory organic material is approached with two distinct model calculations: the first considers that the fraction of atoms used in the formation of organic compounds is removed from the system (i.e. organic compounds are formed in the gas phase and are nonreactive); and the second assumes that organic compounds are formed by the reaction between different compounds that had previously condensed from the gas phase. Results show that refractory material represents more than 50 wt % of the mass of solids accreted by the simulated planets, with up to 30 wt % of the total mass composed of refractory organic compounds. Carbide and silicate abundances are consistent with C/O and Mg/Si elemental ratios of 0.5 and 1.02 for the Sun. Less than 1 wt % of carbides; pyroxene and olivine in similar quantities are formed. The model predicts planets that are similar in composition to those of the Solar system. It also shows that, starting from a common initial nebula composition, a wide variety of chemically different planets can form, which means that the differences in planetary compositions are due to differences in the planetary formation process. We show that a model in which refractory organic material is absent from the system is more compatible with observations. The use of a planet formation model is essential to form a wide diversity of planets in a consistent way.Comment: 18 pages, 29 figures. Accepted for publication in A&

    Chemical composition of Earth-like planets

    Full text link
    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.Comment: 3 pages, 4 figures - Accepted for publication in the Bolet\'in de la Asociaci\'on Argentina de Astronom\'ia, vol.5

    Prediction of HIV status based on socio-behavioural characteristics in East and Southern Africa.

    Get PDF
    INTRODUCTION High yield HIV testing strategies are critical to reach epidemic control in high prevalence and low-resource settings such as East and Southern Africa. In this study, we aimed to predict the HIV status of individuals living in Angola, Burundi, Ethiopia, Lesotho, Malawi, Mozambique, Namibia, Rwanda, Zambia and Zimbabwe with the highest precision and sensitivity for different policy targets and constraints based on a minimal set of socio-behavioural characteristics. METHODS We analysed the most recent Demographic and Health Survey from these 10 countries to predict individual's HIV status using four different algorithms (a penalized logistic regression, a generalized additive model, a support vector machine, and a gradient boosting trees). The algorithms were trained and validated on 80% of the data, and tested on the remaining 20%. We compared the predictions based on the F1 score, the harmonic mean of sensitivity and positive predictive value (PPV), and we assessed the generalization of our models by testing them against an independent left-out country. The best performing algorithm was trained on a minimal subset of variables which were identified as the most predictive, and used to 1) identify 95% of people living with HIV (PLHIV) while maximising precision and 2) identify groups of individuals by adjusting the probability threshold of being HIV positive (90% in our scenario) for achieving specific testing strategies. RESULTS Overall 55,151 males and 69,626 females were included in the analysis. The gradient boosting trees algorithm performed best in predicting HIV status with a mean F1 score of 76.8% [95% confidence interval (CI) 76.0%-77.6%] for males (vs [CI 67.8%-70.6%] for SVM) and 78.8% [CI 78.2%-79.4%] for females (vs [CI 73.4%-75.8%] for SVM). Among the ten most predictive variables for each sex, nine were identical: longitude, latitude and, altitude of place of residence, current age, age of most recent partner, total lifetime number of sexual partners, years lived in current place of residence, condom use during last intercourse and, wealth index. Only age at first sex for male (ranked 10th) and Rohrer's index for female (ranked 6th) were not similar for both sexes. Our large-scale scenario, which consisted in identifying 95% of all PLHIV, would have required testing 49.4% of males and 48.1% of females while achieving a precision of 15.4% for males and 22.7% for females. For the second scenario, only 4.6% of males and 6.0% of females would have had to be tested to find 55.7% of all males and 50.5% of all females living with HIV. CONCLUSIONS We trained a gradient boosting trees algorithm to find 95% of PLHIV with a precision twice higher than with general population testing by using only a limited number of socio-behavioural characteristics. We also successfully identified people at high risk of infection who may be offered pre-exposure prophylaxis or voluntary medical male circumcision. These findings can inform the implementation of new high-yield HIV tests and help develop very precise strategies based on low-resource settings constraints

    Cometary ices in forming protoplanetary disc midplanes

    Get PDF
    Low-mass protostars are the extrasolar analogues of the natal Solar system. Sophisticated physicochemical models are used to simulate the formation of two protoplanetary discs from the initial prestellar phase, one dominated by viscous spreading and the other by pure infall. The results show that the volatile prestellar fingerprint is modified by the chemistry en route into the disc. This holds relatively independent of initial abundances and chemical parameters: physical conditions are more important. The amount of CO2 increases via the grain-surface reaction of OH with CO, which is enhanced by photodissociation of H2O ice. Complex organic molecules are produced during transport through the envelope at the expense of CH3OH ice. Their abundances can be comparable to that of methanol ice (few per cent of water ice) at large disc radii (R > 30 au). Current Class II disc models may be underestimating the complex organic content. Planet population synthesis models may underestimate the amount of CO2 and overestimate CH3OH ices in planetesimals by disregarding chemical processing between the cloud and disc phases. The overall C/O and C/N ratios differ between the gas and solid phases. The two ice ratios show little variation beyond the inner 10 au and both are nearly solar in the case of pure infall, but both are subsolar when viscous spreading dominates. Chemistry in the protostellar envelope en route to the protoplanetary disc sets the initial volatile and prebiotically significant content of icy planetesimals and cometary bodies. Comets are thus potentially reflecting the provenances of the midplane ices in the solar nebula

    Carbon to oxygen ratios in extrasolar planetesimals

    Get PDF
    Observations of small extrasolar planets with a wide range of densities imply a variety of planetary compositions and structures. Currently, the only technique to measure the bulk composition of extrasolar planetary systems is the analysis of planetary debris accreting onto white dwarfs, analogous to abundance studies of meteorites. We present measurements of the carbon and oxygen abundances in the debris of planetesimals at ten white dwarfs observed with the Hubble Space Telescope, along with C/O ratios of debris in six systems with previously reported abundances. We find no evidence for carbon-rich planetesimals, with C/O ) = −0.92, and oxygen-rich objects with C/O less than or equal to that of the bulk Earth. The latter group may have a higher mass fraction of water than the Earth, increasing their relative oxygen abundance

    Hospital Outcomes of Community-Acquired SARS-CoV-2 Omicron Variant Infection Compared With Influenza Infection in Switzerland

    Full text link
    IMPORTANCE: With the ongoing COVID-19 pandemic, it is crucial to assess the current burden of disease of community-acquired SARS-CoV-2 Omicron variant in hospitalized patients to tailor appropriate public health policies. Comparisons with better-known seasonal influenza infections may facilitate such decisions. OBJECTIVE: To compare the in-hospital outcomes of patients hospitalized with the SARS-CoV-2 Omicron variant with patients with influenza. DESIGN, SETTING, AND PARTICIPANTS: This cohort study was based on a national COVID-19 and influenza registry. Hospitalized patients aged 18 years and older with community-acquired SARS-CoV-2 Omicron variant infection who were admitted between January 15 and March 15, 2022 (when B.1.1.529 Omicron predominance was >95%), and hospitalized patients with influenza A or B infection from January 1, 2018, to March 15, 2022, where included. Patients without a study outcome by August 30, 2022, were censored. The study was conducted at 15 hospitals in Switzerland. EXPOSURES: Community-acquired SARS-CoV-2 Omicron variant vs community-acquired seasonal influenza A or B. MAIN OUTCOMES AND MEASURES: Primary and secondary outcomes were defined as in-hospital mortality and admission to the intensive care unit (ICU) for patients with the SARS-CoV-2 Omicron variant or influenza. Cox regression (cause-specific and Fine-Gray subdistribution hazard models) was used to account for time-dependency and competing events, with inverse probability weighting to adjust for confounders with right-censoring at day 30. RESULTS: Of 5212 patients included from 15 hospitals, 3066 (58.8%) had SARS-CoV-2 Omicron variant infection in 14 centers and 2146 patients (41.2%) had influenza A or B in 14 centers. Of patients with the SARS-CoV-2 Omicron variant, 1485 (48.4%) were female, while 1113 patients with influenza (51.9%) were female (P = .02). Patients with the SARS-CoV-2 Omicron variant were younger (median [IQR] age, 71 [53-82] years) than those with influenza (median [IQR] age, 74 [59-83] years; P < .001). Overall, 214 patients with the SARS-CoV-2 Omicron variant (7.0%) died during hospitalization vs 95 patients with influenza (4.4%; P < .001). The final adjusted subdistribution hazard ratio (sdHR) for in-hospital death for SARS-CoV-2 Omicron variant vs influenza was 1.54 (95% CI, 1.18-2.01; P = .002). Overall, 250 patients with the SARS-CoV-2 Omicron variant (8.6%) vs 169 patients with influenza (8.3%) were admitted to the ICU (P = .79). After adjustment, the SARS-CoV-2 Omicron variant was not significantly associated with increased ICU admission vs influenza (sdHR, 1.08; 95% CI, 0.88-1.32; P = .50). CONCLUSIONS AND RELEVANCE: The data from this prospective, multicenter cohort study suggest a significantly increased risk of in-hospital mortality for patients with the SARS-CoV-2 Omicron variant vs those with influenza, while ICU admission rates were similar

    Metallotexaphyrins as MRI-Active Catalytic Antioxidants for Neurodegenerative Disease: A Study on Alzheimer’s Disease

    Get PDF
    The complex etiology of neurodegeneration continues to stifle efforts to develop effective therapeutics. New agents elucidating key pathways causing neurodegeneration might serve to increase our understanding and potentially lead to improved treatments. Here, we demonstrate that a water soluble manganese(II) texaphyrin (MMn) is a suitable magnetic resonance imaging (MRI) contrast agent for detecting larger amyloid beta constructs. The imaging potential of MMn was inferred on the basis of in vitro studies and in vivo detection in Alzheimer's disease C. elegans models using MRI and ICP-MS. In vitro antioxidant and cellular-based assays provide support for the notion that this porphyrin analogue shows promise as a therapeutic agent able to mitigate the oxidative and nitrative toxic effects considered causal in neurodegeneration. The present report marks the first elaboration of an MRI-active metalloantioxidant that confers diagnostic and therapeutic benefit in Alzheimer's disease models without conjugation of a radioisotope, targeting moiety, or therapeutic payload
    corecore