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ABSTRACT
Observations of small extrasolar planets with a wide range of densities imply a variety
of planetary compositions and structures. Currently, the only technique to measure the
bulk composition of extrasolar planetary systems is the analysis of planetary debris
accreting onto white dwarfs, analogous to abundance studies of meteorites. We present
measurements of the carbon and oxygen abundances in the debris of planetesimals at
ten white dwarfs observed with the Hubble Space Telescope, along with C/O ratios of
debris in six systems with previously reported abundances. We find no evidence for
carbon-rich planetesimals, with C/O< 0.8 by number in all 16 systems. Our results
place an upper limit on the occurrence of carbon-rich systems at < 17 percent with
a 2σ confidence level. The range of C/O of the planetesimals is consistent with that
found in the Solar System, and appears to follow a bimodal distribution: a group
similar to the CI chondrites, with log(<C/O>) = −0.92, and oxygen-rich objects with
C/O less than or equal to that of the bulk Earth. The latter group may have a higher
mass fraction of water than the Earth, increasing their relative oxygen abundance.

Key words: planets and satellites: composition – white dwarfs

1 INTRODUCTION

The ongoing search for extrasolar planets has been spectacu-
larly successful, with over 1500 confirmed planets discovered
to date1, including many small objects suspected of being
rocky. For a subset of these smallest detected exoplanets,
both precision radial velocity measurements and transit pho-
tometry have been obtained. This provides a measurement
of their masses and radii, and therefore their bulk densi-
ties. Intriguingly, these densities have a wide spread, and do
not follow a simple mass-radius relationship (Weiss & Marcy
2014; Dressing et al. 2015). This may imply that some small
exoplanets have compositions distinct from the rocky (and
icy) planets and moons of the Solar System, which are all, to
first order, a combination of H2O, MgSiO3 and Fe (Allègre
et al. 2001). Modelling exoplanets with a greater variety of
bulk chemistries may account for the differences in bulk den-
sities. However, it is impossible to unambiguously infer the
internal composition of a planet from its density alone. Sea-
ger et al. (2007) and Sohl et al. (2012) computed mass-radius
relationships for different planetary compositions, finding a
significant degeneracy between different densities, interior
structures and compositions.

? d.j.wilson.1@warwick.ac.uk
1 http://exoplanets.org/

It has been hypothesized that enhanced C/O levels (rel-
ative to the Solar value) in a protoplanetary disc could
change the condensation sequence of planetary solids, pref-
erentially forming carbon compounds (Kuchner & Seager
2005; Moriarty et al. 2014). Under conditions where carbon
is the most abundant metal, “carbon planets” may form.
The alternative condensation sequence begins with the for-
mation of CO, incorporating all of the available oxygen and
restricting the formation of silicates. Excess carbon then
forms SiC and graphite, for example. An Earth-sized carbon
planet would likely form with an Fe-rich core, surrounded by
a mantle of graphite, carbides and, at higher pressures, di-
amond. Bond et al. (2010) showed that this carbon-based
chemistry could become important in protoplanetary discs
with C/O& 0.8. Carbon could contribute more than half
the mass of solid exoplanets formed in such an environment,
with only trace oxygen present.

Observational identification of carbon planets is hin-
dered by the inability to measure planetary compositions
in-situ, with the exception of the upper atmospheres of a
few objects (Deming et al. 2013; Kreidberg et al. 2014).
Given the diversity in atmospheric composition between the
otherwise chemically similar terrestrial planets in the Solar
System, such observations cannot be used to infer the bulk
compositions of rocky exoplanets. Neither are the C/O ratios
of exoplanet host stars a reliable tracer of disc composition

c© 2016 The Authors
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Figure 1. HST/COS ultraviolet spectra of the first six white dwarfs in Table 1. Spectra are smoothed with a 5-point boxcar and

normalised, then offset by multiples of 1 for clarity. The spectra are dominated by the broad Lyα line (with the central air glow emission

line removed), and absorption lines of several metals are present. The wavelengths of the carbon and oxygen absorption transitions are
indicated by the green and blue lines, respectively (Table 2). In some of the spectra, the area between the dashed grey lines is affected

by geocoronal oxygen emission, which is not corrected for by the COS pipeline.

(Teske et al. 2013). Carbon to oxygen ratios in protoplan-
etary discs computed by Thiabaud et al. (2015) show only
a weak dependence on the host star abundances. This ratio
will also vary within a protoplanetary disc due to regional
temperature variations and collisions, amongst other factors
(Öberg et al. 2011; Gaidos 2015).

The only method to reliably determine compositions
of exoplanetary bodies is via detection of their debris in
the photospheres of white dwarfs (Zuckerman et al. 2007).
Recent studies have shown that 25–50 percent of all white
dwarfs are polluted by debris from planetesimals (Zucker-
man et al. 2003, 2010; Koester et al. 2014a; Barstow et al.
2014), ranging in mass from small asteroids to objects as
large as Pluto (Girven et al. 2012; Wyatt et al. 2014). The
bulk composition of these exoplanetary bodies can be in-
ferred from the debris detected in the white dwarf photo-
sphere, analogous to how the compositions of Solar System
bodies are inferred from meteorites (Lodders & Fegley 2011).
High-resolution spectroscopy of over a dozen metal-polluted
white dwarfs has revealed accretion of numerous atomic
species, allowing detailed studies of the chemical composi-
tion of extrasolar planetesimals (Klein et al. 2011; Gänsicke
et al. 2012; Dufour et al. 2012; Jura et al. 2012; Farihi et al.
2013; Xu et al. 2014; Raddi et al. 2015; Wilson et al. 2015).
Overall, these objects have chemical compositions similar to
inner Solar System bodies, dominated by O, Si, Mg and Fe,
and volatile depleted (Jura & Young 2014). However, the de-
tailed compositions can be very diverse, with objects having
enhanced levels of core material (Melis et al. 2011; Gänsicke
et al. 2012; Wilson et al. 2015), evidence of post-nebula pro-

cessing (Xu et al. 2013), and significant mass fractions of
water (Farihi et al. 2013; Raddi et al. 2015).

Thus far, studies of planetesimal compositions at white
dwarfs have predominately focused on individual objects.
However, the growing sample of abundance studies now al-
lows conclusions to be derived regarding the overall chemical
abundances of (solid) exoplanet precursors in a statistically
significant sample of systems. Here, we use these data to
constrain the occurrence frequency of carbon planets.

2 CARBON AND OXYGEN DEBRIS
ABUNDANCES AT WHITE DWARFS

We present debris abundance measurements for ten white
dwarfs observed with the Cosmic Origins Spectrograph on
board the Hubble Space Telescope (HST/COS) as part of
Program IDs 12169, 12869, and 12474 (Gänsicke et al. 2012;
Koester et al. 2014a). Table 1 presents their effective tem-
peratures (Teff) and surface gravities (log g), as well as el-
emental accretion rates. The techniques used to determine
these results are described in detail in Koester et al. (2014a),
so we only briefly summarise here. Firstly, optical spectra
from the SPY survey were refitted with the latest model
grid to determine temperatures and surface gravities. If no
SPY spectra were available, we used parameters from Gian-
ninas et al. (2011). After correcting for a small systematic
difference between the two determinations, we fixed the sur-
face gravity to the value obtained from the optical data,
and then determined the temperature from a fit to the ul-
traviolet COS spectra. For this we used the slope between

MNRAS 000, 1–6 (2016)
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Table 1. New atmospheric parameters and debris accretion rate measurements for ten white dwarfs identified by Koester et al. (2014a).

Spectra of the first six are shown in Fig. 1. 1Updated from Gänsicke et al. (2012)

Name Teff (K) log g (cm s−2) Ṁ(C) (g s−1) Ṁ(O) (g s−1)

WD 2058+181 17308 ± 235 7.920 ± 0.089 (2.06 ± 0.95) × 106 (1.03 ± 0.47) × 107

WD 1647+375 22803 ± 310 7.902 ± 0.089 (1.14 ± 0.52) × 107 (2.16 ± 0.75) × 108

WD 1013+256 22133 ± 301 8.022 ± 0.089 (1.92 ± 0.66) × 106 (3.2 ± 1.6) × 107

WD 1953–715 18975 ± 258 7.957 ± 0.089 (1.56 ± 0.72) × 106 (2.8 ± 1.3) × 107

WD 1943+163 19451 ± 264 7.896 ± 0.089 (1.40 ± 0.64) × 106 (1.97 ± 0.91) × 107

WD 0059+257 20491 ± 278 8.002 ± 0.089 ≤ 2.9 × 104 (3.4 ± 1.6) × 107

PG 0843+5161 22412 ± 304 7.902 ± 0.089 (2.42 ± 1.11) × 105 (1.09 ± 0.50) × 108

PG 1015+1611 18911 ± 257 8.042 ± 0.089 ≤ 6.9 × 104 (4.9 ± 2.3) × 107

SDSS J1228+10401 20713 ± 281 8.150 ± 0.089 (1.70 ± 0.78) × 105 (4.4 ± 2.0) × 108

GALEX J1931+01171 21457 ± 291 7.900 ± 0.089 (7.1 ± 4.9) × 105 (9.0 ± 6.2) × 108
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Figure 2. Enlarged sections of the spectrum of WD 1953–
715 showing photospheric O i 1152.2, 1302.2, 1304.9, 1306.0 Å,
Si ii 1304.4 Å and C ii 1334.5, 1335.6 Å absorption lines. The
model atmosphere fit used to calculate the abundances is overlaid

in blue. Interstellar components of the O i 1302.2 Å, Si ii 1304.4,
1305.6 Å and C ii 1334.5 Å absorption lines are marked with

dashed grey lines.

Table 2. List of the absorption lines used for the debris abun-
dance measurements.

Ion Vacuum rest wavelength (Å)

C ii 1334.530, 1335.660, 1335.708
C iii 1174.930, 1175.260, 1175.590, 1175.710, 1175.987, 1176.370
O i 1152.150, 1302.170, 1304.860, 1306.030

the optical photometry and the absolutely calibrated COS
spectra as additional constraint.

The best fit atmospheric parameters were then used
to create synthetic spectra containing approximately 14 000
spectral lines from 14 elements.The atmospheric metal
abundances were varied until a good fit was obtained be-
tween the synthetic spectra and the observed absorption
lines. Adjusting the abundances by ± 0.2 dex around the
best fit values allowed an estimate of the abundance uncer-
tainties. The uncertainty in the atmospheric parameters has
only a small effect on the element abundances (<0.04 dex).
Table 2 lists the absorption lines used to determine the car-
bon and oxygen abundances. The oxygen abundances are
primarily measured from the O i 1152.15 Å line. The O i lines
around 1300 Å are affected by geocoronal emission in sev-
eral of the spectra, which is not corrected for by the COS
pipeline. Where no geocoronal emission is present, these
lines are still affected by blending with Si ii and interstel-
lar O i lines, but still provide (less accurate) abundance
determinations which agree with measurements from the
O i 1152.15 Å line.

As the metals diffuse out of the white dwarf atmosphere
on different time scales, the element abundances in the white
dwarf photosphere do not necessarily match those of the de-
bris material. The diffusion time scales were calculated us-
ing the same atmospheric models as for the spectral fitting
(Koester 2009). As the diffusion time scales for these hydro-
gen atmosphere white dwarfs are of order days to, at most,
months, it is reasonable to assume that the white dwarfs
are currently accreting, and accretion and diffusion are in
equilibrium. The accretion rate is therefore the ratio of the
atmospheric abundance to the diffusion time scale.Radiative
levitation, which can change the diffusion time scales or even
keep an element in the atmosphere without ongoing accre-
tion (Chayer & Dupuis 2010), is taken into account when
calculating the diffusion time scales, but has a negligible ef-
fect on carbon and no effect on oxygen over the temperature
range of our sample. Finally, the C/O ratio by number is cal-
culated as the ratio of the accretion rates, weighted by the
relative atomic masses.

Analysis of the debris in four of these white dwarfs were
presented in Gänsicke et al. (2012), but the abundances used
here have been updated with new calculations. Ultravio-
let spectra of the remaining six white dwarfs are shown in
Fig. 1, featuring photospheric absorption lines from a variety
of metals, including both carbon and oxygen (Fig. 2).

MNRAS 000, 1–6 (2016)
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In addition to these new measurements, we have as-
sembled all published abundances for carbon and oxygen at
white dwarfs both observed with COS and analysed with
the same model described above (Wilson et al. 2015; Xu
et al. 2014; Farihi et al. 2013; Xu et al. 2013). These crite-
ria create a homogeneous sample, which avoids systematic
uncertainties that may result from comparing different data
sources and models. Where more than one measurement is
available we use the most recent result, and we adopt the
most commonly used white dwarf designations. In total, we
discuss C/O measurements for debris in eleven systems and
firm upper limits for another five.

Four of the white dwarfs in our sample have helium
dominated atmospheres, labelled in Fig 3 and Table 3. These
stars develop deep convective envelopes, which may lead
to dredge-up of core-carbon into the atmosphere. Dredge-
up typically occurs in cool (Teff

<∼ 12 000 K) white dwarfs,
but it has been suggested that a small number of white
dwarfs may have helium envelopes thin enough to pollute
the atmosphere with core-carbon even at higher tempera-
tures (Koester et al. 2014b; Wilson et al. 2015). Thus, al-
though we treat the C/O ratios in helium atmosphere white
dwarfs as firm detections, this caveat should be kept in
mind when discussing the planetary abundances at individ-
ual white dwarfs. The majority of our sample (12 out of 16)
have hydrogen atmospheres, which are unaffected by dredge
up.

3 DISCUSSION

Figure 3 and Table 3 show the C/O ratios of the planetesimal
debris at the 16 systems in our sample as a function of effec-
tive temperature (and therefore the age since white dwarf
formation). We compare these ratios with those for the CI
chondritic meteorites (Lodders & Fegley 2011), bulk Earth
(Allègre et al. 2001), Comet Halley (Jessberger et al. 1988),
and the Solar photosphere (Asplund et al. 2009). As car-
bon chemistry is thought to become an important factor in
protoplanetary discs with C/O> 0.8 (log (C/O) > −0.097),
we take this as a lower limit for a planetesimal formed in
a carbon-rich environment. We note, however, that plan-
ets formed in such discs are predicted to potentially have
C/O� 1.0 (Bond et al. 2010).

We find no planetary debris with C/O> 0.8. The debris
at WD 2058+181 has the highest ratio, with log (C/O) =
−0.57± 0.28, still below the Solar value. Applying binomial
statistics, we find that planetesimals with C/O> 0.8 occur
in < 17 percent of systems at a 2σ confidence level, falling to
< 6.5 percent with 1σ confidence. Our upper limit on high
planetary C/O is consistent with that found in stellar abun-
dances by Fortney (2012), who showed that the fraction of
stars with C/O> 0.8 is no more than 10–15 percent. None of
the planetesimal debris in the 16 systems has C/O similar
to that of Comet Halley (log (C/O) = −0.04), supporting
the conclusions of Veras et al. (2014) that comets are not
a significant population of parent bodies for the debris de-
tected at many white dwarfs. There are no observed trends
in C/O with the post-main sequence (cooling) age.

Although none of the systems are carbon-rich, the ma-
terial does appear to fall into two distinct populations, with
an apparent gap between log (C/O) ≈ −1 and log (C/O) .

−2. Six systems have relatively high C/O ratios, with
log(<C/O>) = 0.12 ± 0.07 (where the error is the 1σ
spread). This is consistent with the CI chondrite meteorites
(Lodders & Fegley 2011), which are thought to be repre-
sentative of the primordial composition of the rocky Solar
System. It is likely that the debris in these systems origi-
nated as small asteroids, which had not undergone signifi-
cant post-nebula differentiation .

The remaining ten systems all have C/O less than or
equal to that of the bulk Earth. Comparing the relative
abundances of carbon and oxygen in this group with the
other elements detected in their debris shows that they
have a high oxygen abundance (relative to, for example, Si),
rather than being relatively poor in carbon. A speculative
explanation for this is that the parent bodies of the debris
contained a significant amount of water, similar to Ceres or
the large moons of the gas giants. High mass fractions of
water have already been detected in debris at GD 61 (Farihi
et al. 2013), which has an upper limit on its C/O ratio plac-
ing it in the low C/O group. Addition of water to a planetesi-
mal with an otherwise Earth-like composition would increase
the abundance of oxygen, but leave the carbon abundance
unchanged, decreasing the C/O ratio. A potential caveat to
this argument is the study by Jura & Xu (2012) of hydro-
gen in helium atmosphere white dwarfs in the 80 pc sample.
Their results suggested that water makes up less that one
percent of the mass accreting onto the white dwarfs in their
sample. However, both the amount and origin of hydrogen
in helium atmosphere white dwarfs, and its relevance to de-
bris accretion, are subject to ongoing discussion (Koester &
Kepler 2015; Bergeron et al. 2011).

Additionally, the carbon content of the Earth, and in
particular the core, is still subject to discussion. Allègre
et al. (2001) find a mass fraction of 0.17–0.36 percent, the
lower bound of which we use to calculate a C/O ratio in
Fig. 3. In contrast, Marty (2012) instead calculate a carbon
mass fraction of only 0.053 percent. Using the oxygen frac-
tion from Allègre et al. (2001), this lowers the log(<C/O>
to -2.7, consistent with the average of the low C/O systems
(log(<C/O>) = −2.5 ± 0.36).

By providing a strong lower limit of the occurrence
of carbon-rich planetesimals, we show that debris-polluted
white dwarfs are likely the most powerful diagnostics of car-
bon chemistry in extrasolar planetesimals, and increasing
the sample size will provide stronger constraints on the ex-
istence, or lack thereof, of carbon planets. More generally,
abundance studies of the debris at white dwarfs are sensitive
to a wide variety of elements, making them the ideal tool
to systematically investigate the full range of non-gaseous
planetary chemistry.
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Figure 3. C/O number ratios of the planetesimal debris in our sample, plotted against the effective temperature (Teff) of the host
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significance. White dwarfs with helium atmospheres, which may be affected by convective carbon dredge-up that could enhance their

carbon abundances (Sect. 2), are marked with *. Objects with similar temperatures have been offset slightly for clarity. Whilst we plot
the value for Earth’s C/O from Allègre et al. (2001), we note that Marty (2012) suggests a value ≈ 0.5 dex lower (Sect. 3).

.

Table 3. C/O ratios by number shown in Fig.3, in order of in-
creasing C/O. White dwarfs with helium atmospheres are marked

with *. References: 1. This work; 2. Xu et al. (2013); 3. Farihi et al.
(2013); 4. Xu et al. (2014); 5. Wilson et al. (2015).

Name log (C/O) Ref.

SDSS J1228+1040 −3.3 ± 0.28 1

GD 61* ≤ −3.0 3
GALEX J1931+0117 −3.0 ± 0.42 1

WD 0059+257 ≤ −2.9 1

G241-6* ≤ −2.9 2
PG 1015+161 ≤ −2.7 1

PG 0843+516 −2.5 ± 0.28 1
GD 13 ≤ −2.2 4
GD 40* −2.2 ± 0.22 2

G29-38 −2.1 ± 0.17 4

WD 1647+375 −1.2 ± 0.25 1
WD 1013+256 −1.1 ± 0.25 1

WD 1953-715 −1.1 ± 0.28 1
WD 1943+163 −1.0 ± 0.28 1
SDSS J0845+2257* −0.84 ± 0.28 5

WD 2058+181 −0.57 ± 0.28 1

the NASA/ESA Hubble Space Telescope, obtained at the
Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc.,

under NASA contract NAS 5-26555. These observations are
associated with program IDs 12169, 12869 and 12474.
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Öberg K. I., Murray-Clay R., Bergin E. A., 2011, ApJ Lett., 743,
L16
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Wilson D. J., Gänsicke B. T., Koester D., Toloza O., Pala A. F.,
Breedt E., Parsons S. G., 2015, MNRAS, 451, 3237

Wyatt M. C., Farihi J., Pringle J. E., Bonsor A., 2014, MNRAS,

439, 3371
Xu S., Jura M., Klein B., Koester D., Zuckerman B., 2013, ApJ,

766, 132

Xu S., Jura M., Koester D., Klein B., Zuckerman B., 2014, ApJ,
783, 79

Zuckerman B., Koester D., Reid I. N., Hünsch M., 2003, ApJ,
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