Models of planet formation are mainly focused on the accretion and dynamical
processes of the planets, neglecting their chemical composition. In this work,
we calculate the condensation sequence of the different chemical elements for a
low-mass protoplanetary disk around a solar-type star. We incorporate this
sequence of chemical elements (refractory and volatile elements) in our
semi-analytical model of planet formation which calculates the formation of a
planetary system during its gaseous phase. The results of the semi-analytical
model (final distributions of embryos and planetesimals) are used as initial
conditions to develope N-body simulations that compute the post-oligarchic
formation of terrestrial-type planets. The results of our simulations show that
the chemical composition of the planets that remain in the habitable zone has
similar characteristics to the chemical composition of the Earth. However,
exist differences that can be associated to the dynamical environment in which
they were formed.Comment: 3 pages, 4 figures - Accepted for publication in the Bolet\'in de la
Asociaci\'on Argentina de Astronom\'ia, vol.5