79 research outputs found

    Rotational Spectroscopy of PAHs: Acenaphthene, Acenaphthylene and Fluorene

    Full text link
    Pure rotational spectra of three polycyclic aromatic hydrocarbons - acenaphthene, acenaphthylene and fluorene - have been obtained by Fourier transform microwave spectroscopy of a molecular beam and subsequently by millimeter wave absorption spectroscopy for acenaphthene and fluorene. The data presented here will be useful for deep radio astronomical searches for PAHs employing large radio telecopes.Comment: 2 pages, 1 figure (uses iaus.sty), to appear in IAU Symposium No. 231, Astrochemistry - Recent Successes and Current Challenges, eds. D. C. Lis, G. A. Blake & E. Herbst (Cambridge Univ. Press

    Brief Communication: A new testing field for debris flow warning systems

    Get PDF
    Abstract. A permanent field installation for the systematic test of debris flow warning systems and algorithms has been equipped on the eastern Italian Alps. The installation was also designed to produce didactic videos and it may host informative visits. The populace education is essential and should be envisaged in planning any research on hazard mitigation interventions: this new installation responds to this requirement and offers an example of integration between technical and informative needs. The occurrence of a debris flow in 2014 allowed the first tests of a new warning system under development and to record an informative video on its performances. This paper will provide a description of the installation and an account of the first technical and informative results obtained

    Comparative study of structure and photo-induced reactivity of malonaldehyde and acetylacetone isolated in nitrogen matrices

    No full text
    Structure and reactivity of the eight enolic forms (one chelated and seven non-chelated) of malonaldehyde and acetylacetone are compared through theoretical and experimental data. Ground-state geometries, energies, and vibrational frequencies are calculated with the B3LYP/6–311++G(2d,2p) model chemistry. The electronic delocalisation as well as the cis/trans rotamer properties are analysed. The hydrogen bond strength of the chelated forms can be estimated by the energy difference between chelated and non-chelated forms, and its enhancement due to methyl-induced electron release is estimated at 1.7 kcal·mol⁻¹. UV- and IR-induced reactivity of molecules isolated in nitrogen matrices is studied by means of FT–IR spectrometry. Interconversion between rotamers is the main process observed for both molecules, only some among the seven non-chelated forms being created

    The ALMA-ALPINE [CII] survey: The star formation history and the dust emission of star-forming galaxies at 4.5 < z < 6.2

    Get PDF
    Star-forming galaxies are composed of various types of galaxies. However, the luminosity functions at z &amp; 4-5 suggest that most galaxies have a relatively low stellar mass (log Mstar ∼ 10) and a low dust attenuation (AFUV ∼ 1:0). The physical properties of these objects are quite homogeneous. We used an approach where we combined their rest-frame far-infrared and submillimeter emissions and utilized the universe and the redshift as a spectrograph to increase the amount of information in a collective way. From a subsample of 27 ALMA-detected galaxies at z &gt; 4:5, we built an infrared spectral energy distribution composite template. It was used to fit, with CIGALE, the 105 galaxies (detections and upper limits) in the sample from the far-ultraviolet to the far-infrared. The derived physical parameters provide information to decipher the nature of the dust cycle and of the stellar populations in these galaxies. The derived IR composite template is consistent with the galaxies in the studied sample. A delayed star formation history with τmain = 500 Myr is slightly favored by the statistical analysis as compared to a delayed with a final burst or a continuous star formation history. The position of the sample in the star formation rate (SFR) versus Mstar diagram is consistent with previous papers. The redshift evolution of the log Mstar versus AFUV relation is in agreement with an evolution in redshift of this relation. This evolution is necessary to explain the cosmic evolution of the average dust attenuation of galaxies. Evolution is also observed in the Ldust=LFUV (IRX) versus UV slope βFUV diagram: younger galaxies have bluer βFUV. We modeled the shift of galaxies in the IRX versus the βFUV diagram with the mass-weighted age as a free parameter, and we provide an equation to make predictions. The large sample studied in this paper is generally consistent with models that assume rapid dust formation from supernovae and removal of dust by outflows and supernovae blasts. However, we find that high mass dusty star-forming galaxies cannot be explained by the models

    Seeds of Life in Space (SOLIS). III. Zooming Into the Methanol Peak of the Prestellar Core L1544

    Get PDF
    Toward the prestellar core L1544, the methanol (CH3OH) emission forms an asymmetric ring around the core center, where CH3OH is mostly in solid form, with a clear peak at 4000 au to the northeast of the dust continuum peak. As part of the NOEMA Large Project SOLIS (Seeds of Life in Space), the CH3OH peak has been spatially resolved to study its kinematics and physical structure and to investigate the cause behind the local enhancement. We find that methanol emission is distributed in a ridge parallel to the main axis of the dense core. The centroid velocity increases by about 0.2 km s−1 and the velocity dispersion increases from subsonic to transonic toward the central zone of the core, where the velocity field also shows complex structure. This could be an indication of gentle accretion of material onto the core or the interaction of two filaments, producing a slow shock. We measure the rotational temperature and show that methanol is in local thermodynamic equilibrium (LTE) only close to the dust peak, where it is significantly depleted. The CH3OH column density, N tot(CH3OH), profile has been derived with non-LTE radiative transfer modeling and compared with chemical models of a static core. The measured N tot(CH3OH) profile is consistent with model predictions, but the total column densities are one order of magnitude lower than those predicted by models, suggesting that the efficiency of reactive desorption or atomic hydrogen tunneling adopted in the model may be overestimated; or that an evolutionary model is needed to better reproduce methanol abundance

    Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC1333-IRAS4A

    Get PDF
    Context: Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims: The evolution of sulfur chemistry is studied along the outflows driven by the NGC 1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods: We observed various transitions from OCS, CS, SO, and SO2 towards NGC 1333-IRAS4A in the 1.3, 2, and 3 mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results: The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east–south west direction. SO is detected at extremely high radial velocity up to +25 km s−1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm−3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions: The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Is there a difference between child self-ratings and parent proxy-ratings of the quality of life of children with a diagnosis of Attention Deficit Hyperactivity Disorder (ADHD)? A systematic review of the literature

    Get PDF
    There are contemporary indicators that parent proxy-ratings and child self-ratings of a child’s quality of life (QoL) are not interchangeable. This review examines dual informant studies to assess parent–child agreement on the QoL of children with attention-deficit/hyperactivity disorder. A systematic search of four major databases (PsycINFO, MEDLINE, EMBASE and Cochrane databases) was completed, and related peer-reviewed journals were hand-searched. Studies which reported quantitative QoL ratings for matched parent and child dyads were screened in accordance with relevant inclusion and exclusion criteria. Key findings were extracted from thirteen relevant studies, which were rated for conformity to the recommendations of an adapted version of the STROBE statement guidelines for observational studies. In the majority of studies reviewed, children rated their QoL more highly than their parents. There was some evidence for greater agreement on the physical health domain than psychosocial domains

    VizieR Online Data Catalog: SOLIS. I. OMC2-FIR4 HC3N and HC5N images (Fontani+, 2017)

    Get PDF
    IRAM-NOEMA Interferometer, 3mm receiver, Widex and Narrow-band correlators. Observations with the IRAM NOEMA Interferometer of HC3N (9-8) and HC5N (31-30), at rest frequencies 81.881468GHz and 82.539039GHz , respectively, towards OMC-2 FIR4 have been carried out over 5 days between the 5th and the 19th of August, 2015. The HC3N line was observed in the Widex band correlator, providing a resolution in velocity of ~7.15km/s, while the HC5N line was observed also in the Narrow band correlator with a resolution in velocity of ~0.57km/s. (2 data files)
    corecore