11 research outputs found

    The Maryland Amphibian and Reptile Atlas: A Volunteer-Based Distributional Survey

    No full text
    Declines of amphibian and reptile populations are well documented. Yet a lack of understanding of their distribution may hinder conservation planning for these species. The Maryland Amphibian and Reptile Atlas project (MARA) was launched in 2010. This five-year, citizen science project will document the distribution of the 93 amphibian and reptile species in Maryland. During the 2010 and 2011 field seasons, 488 registered MARA volunteers collected 13,919 occurrence records that document 85 of Maryland's amphibian and reptile species, including 19 frog, 20 salamander, five lizard, 25 snake, and 16 turtle species. Thirteen of these species are of conservation concern in Maryland. The MARA will establish a baseline by which future changes in the distribution of populations of native herpetofauna can be assessed as well as provide information for immediate management actions for rare and threatened species. As a citizen science project it has the added benefit of educating citizens about native amphibian and reptile diversity and its ecological benefits—an important step in creating an informed society that actively participates in the long-term conservation of Maryland's nature heritage

    The influence of weapons-testing noise on Bald Eagle behavior

    No full text
    Volume: 33Start Page: 227End Page: 23

    Designing the Furin-Cleavable Linker in Recombinant Immunotoxins Based on Pseudomonas Exotoxin A

    No full text
    Recombinant immunotoxins (RITs) are fusion proteins that join antibodies to protein toxins for targeted cell killing. RITs armed with Pseudomonas exotoxin A (PE) are undergoing clinical trials for the treatment of cancer. The current design of PE-based RITs joins an antibody fragment to the catalytic domain of PE using a polypeptide linker that is cleaved by the protease furin. Intracellular cleavage of native PE by furin is required for cytotoxicity, yet the PE cleavage site has been shown to be a poor furin substrate. Here we describe the rational design of more efficiently cleaved furin linkers in PE-based RITs, and experiments evaluating their effects on cleavage and cytotoxicity. We found that changes to the furin site could greatly influence both cleavage and cytotoxicity, but the two parameters were not directly correlated. Furthermore, the effects of alterations to the furin linker were not universal. Identical mutations in the anti-CD22 RIT HA22-LR often displayed different cytotoxicity from mutations in the anti-mesothelin RIT SS1-LR/GGS, underscoring the prominent role of the target site in their intoxication pathways. Combining several beneficial mutations in HA22-LR resulted in a variant (HA22-LR/FUR) with a remarkably enhanced cleavage rate and improved cytotoxicity against five B cell lines and similar or enhanced cytotoxicity in five out of six hairy cell leukemia patient samples. This result informs the design of protease-sensitive linkers and suggests that HA22-LR/FUR may be a candidate for further preclinical development
    corecore