9 research outputs found

    Association of a Low-Frequency Variant in HNF1A With Type 2 Diabetes in a Latino Population

    Get PDF
    Importance: Latino populations have one of the highest prevalences of type 2 diabetes worldwide. Objectives: To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. Design, Setting, and Participants: Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14 276 participants and characterized in experimental assays. Main Outcome and Measures: Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. Results: A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10−7) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). Conclusions and Relevance: Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required.publishedVersio

    Association of a Low-Frequency Variant in HNF1A With Type 2 Diabetes in a Latino Population

    Get PDF
    Importance: Latino populations have one of the highest prevalences of type 2 diabetes worldwide. Objectives: To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. Design, Setting, and Participants: Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14 276 participants and characterized in experimental assays. Main Outcome and Measures: Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. Results: A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10−7) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). Conclusions and Relevance: Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required

    Genetic variants in sex hormone pathways and the risk of type 2 diabetes among African American, Hispanic American, and European American postmenopausal women in the US

    No full text
    BACKGROUND: Sex hormones are implicated in the development of diabetes. However, whether genetic variations in sex hormone pathways (SHPs) contribute to the risk of type 2 diabetes mellitus (T2DM) remains to be determined. This study investigated associations between genetic variations in all candidate genes in SHPs and T2DM risk among a cohort of women participating in the Womens Health Initiative (WHI). METHODS: Single nucleotide polymorphisms (SNPs) located within 30 kb upstream and downstream of SHP genes were comprehensively examined in 8180 African American, 3498 Hispanic American, and 3147 European American women in the WHI. In addition, whether significant SNPs would be replicated in independent populations was examined. RESULTS: After adjusting for age, region, and ancestry estimates and correcting for multiple testing, seven SNPs were significantly associated with the risk of T2DM among Hispanic American women were identified in the progesterone receptor (PGR) gene, with rs948516 showing the greatest significance (odds ratio 0.67; 95% confidence interval 0.57-0.78; P = 8.8 × 10-7 ; false discovery rate, Q = 7.8 × 10-4 ). These findings were not replicated in other ethnic groups in the WHI or in sex-combined analyses in replication studies. CONCLUSION: Significant signals were identified implicating the PGR gene in T2DM development in Hispanic American women in the WHI, which are consistent with genome-wide association studies findings linking PGR to glucose homeostasis. Nevertheless, the PGR SNPs-T2DM association was not statistically significant in other ethnic populations. Further studies, especially sex-specific analyses, are needed to confirm the findings and clarify the role of SHPs in T2DM

    The road ahead in genetics and genomics

    No full text
    corecore