13 research outputs found

    Contributions of KM3NeT to ICRC2023

    Full text link
    This document collects the contributions of the KM3NeT collaboration to the ICRC2023 conference, held from July 26 to August 3, 2023, in Nagoya, Japan. KM3NeT submitted 38 contributions to ICRC2023, on neutrino- and multimessenger astronomy, neutrino oscillation physics, cosmic ray physics, searches for dark matter and exotics, calibration, technical detector descriptions, and art. Proceedings are published in Proceedings of Science.Comment: 306 pages, many figures. Collection of proceedings contributions to ICRC2023, published in PoS(ICRC2023), https://pos.sissa.it/444

    KM3NeT broadcast optical data transport system

    Get PDF
    The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV–1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.Agence Nationale de la Recherche (contract ANR-15-CE31-0020)Centre National de la Recherche Scientifique (CNRS)Commission EuropĂ©enne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001)Paris Île-de-France Region, France; Deutsche Forschungsgemeinschaft (DFG)Germany; The General Secretariat of Research and Innovation (GSRI)Greece Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’UniversitĂ  e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) ItalyMinistry of Higher EducationScientific Research and InnovationMorocco, and the Arab Fund for Economic and Social Development, KuwaitNederlandse organisatie voor WetenschappelÂŒk Onderzoek (NWO)The National Science Centre, Poland (2021/41/N/ST2/01177)National Authority for Scientific Research (ANCS)Romania; Ministerio de Ciencia, InnovaciĂłn, InvestigaciĂłn y Universidades (MCIU)Programa Estatal de GeneraciĂłn de Conocimiento (refs. PGC2018-096663-B-C41-A-C42-B-C43-B-C44PID2021-124591NB-C41-C42, -C43)MCIU/FEDERGeneralitat ValencianaPrometeo (PROMETEO/2020/019)GrisolĂ­a (refs. GRISOLIA/2018/119, /2021/192)GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049, /2021/023) programsJunta de AndalucĂ­a (ref. A-FQM-053-UGR18)La Caixa Foundation (ref. LCF/BQ/IN17/11620019)EU: MSC program (ref. 101025085Spain; MarĂ­a Zambrano program within the framework of grants for retaining in the Spanish university system (Spanish Ministry of UniversitiesThe European Union, NextGenerationE

    Probing invisible neutrino decay with KM3NeT/ORCA

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission EuropĂ©enne (FEDER fund and Marie Curie Program), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Île-de-France Region, France; The General Secretariat of Research and Innovation (GSRI), Greece Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’UniversitĂ  e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/N/ST2/01177); National Authority for Scientific Research (ANCS), Romania; Grants PID2021-124591NB-C41, -C42, -C43 funded by MCIN/AEI/ 10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”, Programa de Planes Complementarios I+D+I (refs. ASFAE/2022/023, ASFAE/2022/014), Programa Prometeo (PROMETEO/2020/019) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049. /2021/23) of the Generalitat Valenciana, Junta de AndalucĂ­a (ref. SOMM17/6104/UGR, P18-FR-5057), EU: MSC program (ref. 101025085), Programa MarĂ­a Zambrano (Spanish Ministry of Universities, funded by the European Union, NextGenerationEU), Spain.In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state v3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/alpha 3 = T3/m3 < 180 ps/eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for theta(23), Delta m(31)(2) and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.Commission EuropĂ©enne FEDER fundCommission EuropĂ©enn Marie Curie ProgramMCIN/AEI/ 10.13039/501100011033, ID2021-124591NB-C41, -C42, -C43ERDFEuropean UnionEuropean Union NextGenerationEU/PRTRPlanes Complementarios I+D+I, ASFAE/2022/023, ASFAE/2022/014PROMETEO/2020/019Generalitat Valenciana, GenT, CIDEGENT/2018/034, /2019/043, /2020/049, /2021/23Junta de AndalucĂ­a SOMM17/6104/UGR, P18-FR-5057EU: MSC program 101025085European Union, NextGenerationEU, Programa MarĂ­a Zambran

    Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

    Get PDF
    KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema¼ ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.French National Research Agency (ANR) ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN Italy NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentNational Science Center, Poland National Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovación, Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (MCIU/FEDER) PGC2018-096663-B-C41 PGC2018-096663-B-A-C42 PGC2018-096663-B-BC43 PGC2018-096663-B-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucía SOMM17/6104/UGRGeneralitat Valenciana GRISOLIA/2018/119 CIDEGENT/2018/034La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program, Spain 71367

    Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Get PDF
    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E 2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the ‘‘Fermi bubbles’’). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.Published7–141.8. Osservazioni di geofisica ambientaleJCR Journalrestricte

    Expansion cone for the 3-inch PMTs of the KM3NeT optical modules

    Full text link
    [EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.AdriĂĄn MartĂ­nez, S.; Ageron, M.; Aguilar, JA.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.... (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation. 8(3):1-19. https://doi.org/10.1088/1748-0221/8/03/T03006S1198

    Neutrino physics with JUNO

    No full text

    Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

    No full text
    KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin DyneemaÂź ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI
    corecore