12 research outputs found
The physics impact of proton track identification in future megaton-scale water Cherenkov detectors
In this paper, we investigate the impact in future megaton-scale water
Cherenkov detectors of identifying proton Cherenkov rings. We estimate the
expected event rates for detected neutral current and charged current
quasi-elastic neutrino interactions from atmospheric neutrinos in a
megaton-scale Super-Kamiokande-like detector with both 40% and 20%
photo-cathode coverage. With this sample we examine the prospects for measuring
the neutrino oscillation pattern, and searching for sterile neutrinos. We also
determine the size of selected charged current quasi-elastic samples in a
300-kton fiducial volume Super-Kamiokande-like detector from examples of both
conventional super-beams and beta-beams proposed in the literature. With these
samples, it is shown that full kinematic neutrino reconstruction using the
outgoing proton can improve the reconstructed energy resolution, and give good
neutrino versus anti-neutrino tagging capabilities, adding important
capabilities to water Cherenkov detectors in future projects. We determine the
beam parameters necessary to make use of this technique and present
distributions of neutrino and anti-neutrino selection efficiencies.Comment: 21 pages, 8 figures. Revised version with improved figures, text and
structure, published in JHE
Optimized Two-Baseline Beta-Beam Experiment
We propose a realistic Beta-Beam experiment with four source ions and two
baselines for the best possible sensitivity to theta_{13}, CP violation and
mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are
detected in a 500 kton water Cerenkov detector at a distance L=650 km (first
oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a
50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from
the source. Since the decay ring requires a tilt angle of 34.5 degrees to send
the beam to the magic baseline, the far end of the ring has a maximum depth of
d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction
of ions that decay along the straight sections of the racetrack geometry decay
ring (called livetime) is 0.3. We alleviate this problem by proposing to trade
reduction of the livetime of the decay ring with the increase in the boost
factor of the ions, such that the number of events at the detector remains
almost the same. This allows to substantially reduce the maximum depth of the
decay ring at the far end, without significantly compromising the sensitivity
of the experiment to the oscillation parameters. We take 8B and 8Li with
gamma=390 and 656 respectively, as these are the largest possible boost factors
possible with the envisaged upgrades of the SPS at CERN. This allows us to
reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field.
Increase of magnetic field to 15 T would further reduce d to 738 m only. We
study the sensitivity reach of this two baseline two storage ring Beta-Beam
experiment, and compare it with the corresponding reach of the other proposed
facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in
JHE
Neutrino Probes of the Nature of Light Dark Matter
Dark matter particles gravitationally trapped inside the Sun may annihilate
into Standard Model particles, producing a flux of neutrinos. The prospects of
detecting these neutrinos in future multi-\kton{} neutrino detectors designed
for other physics searches are explored here. We study the capabilities of a
34/100 \kton{} liquid argon detector and a 100 \kton{} magnetized iron
calorimeter detector. These detectors are expected to determine the energy and
the direction of the incoming neutrino with unprecedented precision allowing
for tests of the dark matter nature at very low dark matter masses, in the
range of 5-50 GeV. By suppressing the atmospheric background with angular cuts,
these techniques would be sensitive to dark matter - nucleon spin dependent
cross sections at the fb level, reaching down to a few ab for the most
favorable annihilation channels and detector technology.Comment: Minor changes and clarifications, matches JCAP versio
On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments
Superbeam experiments can, in principle, achieve impressive sensitivities for
CP violation in neutrino oscillations for large . We study how
those sensitivities depend on assumptions about systematical uncertainties. We
focus on the second phase of T2K, the so-called T2HK experiment, and we
explicitly include a near detector in the analysis. Our main result is that
even an idealised near detector cannot remove the dependence on systematical
uncertainties completely. Thus additional information is required. We identify
certain combinations of uncertainties, which are the key to improve the
sensitivity to CP violation, for example the ratio of electron to muon neutrino
cross sections and efficiencies. For uncertainties on this ratio larger than
2%, T2HK is systematics dominated. We briefly discuss how our results apply to
a possible two far detector configuration, called T2KK. We do not find a
significant advantage with respect to the reduction of systematical errors for
the measurement of CP violation for this setup.Comment: 30 pages, 10 figures, version accepted for publication in JHE
Perturbation Theory of Neutrino Oscillation with Nonstandard Neutrino Interactions
We discuss various physics aspects of neutrino oscillation with non-standard
interactions (NSI). We formulate a perturbative framework by taking \Delta
m^2_{21} / \Delta m^2_{31}, s_{13}, and the NSI elements \epsilon_{\alpha
\beta} (\alpha, \beta = e, \mu, \tau) as small expansion parameters of the same
order \epsilon. Within the \epsilon perturbation theory we obtain the S matrix
elements and the neutrino oscillation probability formula to second order
(third order in \nu_e related channels) in \epsilon. The formula allows us to
estimate size of the contribution of any particular NSI element
\epsilon_{\alpha beta} to the oscillation probability in arbitrary channels,
and gives a global bird-eye view of the neutrino oscillation phenomena with
NSI. Based on the second-order formula we discuss how all the conventional
lepton mixing as well as NSI parameters can be determined. Our results shows
that while \theta_{13}, \delta, and the NSI elements in \nu_e sector can in
principle be determined, complete measurement of the NSI parameters in the
\nu_\mu - \nu_\tau sector is not possible by the rate only analysis. The
discussion for parameter determination and the analysis based on the matter
perturbation theory indicate that the parameter degeneracy prevails with the
NSI parameters. In addition, a new solar-atmospheric variable exchange
degeneracy is found. Some general properties of neutrino oscillation with and
without NSI are also illuminated.Comment: manuscript restructured, discussion of new type of parameter
degeneracy added. 47 page
, and the neutrino mass hierarchy at a double baseline Li/B -Beam
We consider a -Beam facility where Li and B ions are
accelerated at , accumulated in a 10 Km storage ring and let
decay, so as to produce intense and beams. These beams
illuminate two iron detectors located at Km and
Km, respectively. The physics potential of this setup is analysed in full
detail as a function of the flux. We find that, for the highest flux ( ion decays per year per baseline), the sensitivity to
reaches ; the sign of
the atmospheric mass difference can be identified, regardless of the true
hierarchy, for ; and, CP-violation
can be discovered in 70% of the -parameter space for , having some sensitivity to CP-violation down to
for .Comment: 35 pages, 20 figures. Minor changes, matches the published versio
Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)
The current focus of the CERN program is the Large Hadron Collider (LHC),
however, CERN is engaged in long baseline neutrino physics with the CNGS
project and supports T2K as recognized CERN RE13, and for good reasons: a
number of observed phenomena in high-energy physics and cosmology lack their
resolution within the Standard Model of particle physics; these puzzles include
the origin of neutrino masses, CP-violation in the leptonic sector, and baryon
asymmetry of the Universe. They will only partially be addressed at LHC. A
positive measurement of would certainly give a
tremendous boost to neutrino physics by opening the possibility to study CP
violation in the lepton sector and the determination of the neutrino mass
hierarchy with upgraded conventional super-beams. These experiments (so called
``Phase II'') require, in addition to an upgraded beam power, next generation
very massive neutrino detectors with excellent energy resolution and high
detection efficiency in a wide neutrino energy range, to cover 1st and 2nd
oscillation maxima, and excellent particle identification and
background suppression. Two generations of large water Cherenkov
detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely
successful. And there are good reasons to consider a third generation water
Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande
for both non-accelerator (proton decay, supernovae, ...) and accelerator-based
physics. On the other hand, a very massive underground liquid Argon detector of
about 100 kton could represent a credible alternative for the precision
measurements of ``Phase II'' and aim at significantly new results in neutrino
astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure
Neutrino-2008: Where are we? Where are we going?
Our present knowledge of neutrinos can be summarized in terms of the
"standard neutrino scenario". Phenomenology of this scenario as well as
attempts to uncover physics behind neutrino mass and mixing are described.
Goals of future studies include complete reconstruction of the neutrino mass
and flavor spectrum, further test of the standard scenario and search for new
physics beyond it. Developments of new experimental techniques may lead to
construction of new neutrino detectors from table-top to multi-Megaton scales
which will open new horizons in the field. With detection of neutrino bursts
from the Galactic supernova and high energy cosmic neutrinos neutrino
astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future
colliders), neutrino astronomy, neutrino structure of the Universe, and
probably, neutrino technologies will be among leading topics of research.Comment: 15 pages, 7 figures, Invited talk at the XXIII International
Conference on Neutrino Physics and Astrophysics, Christchurch, New Zealand,
May 25 - 31, 200
Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects
This document reports on a series of experimental and theoretical studies
conducted to assess the astro-particle physics potential of three future
large-scale particle detectors proposed in Europe as next generation
underground observatories. The proposed apparatus employ three different and,
to some extent, complementary detection techniques: GLACIER (liquid Argon TPC),
LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of
liquids as active detection media. The results of these studies are presented
along with a critical discussion of the performance attainable by the three
proposed approaches coupled to existing or planned underground laboratories, in
relation to open and outstanding physics issues such as the search for matter
instability, the detection of astrophysical- and geo-neutrinos and to the
possible use of these detectors in future high-intensity neutrino beams.Comment: 50 pages, 26 figure
Third family corrections to quark and lepton mixing in SUSY models with non-abelian family symmetry
We re-analyse the effect of corrections from canonical normalisation of kinetic terms on the quark and lepton mixing angles. This type of corrections emerges, for example, from effective higher-dimensional Kähler potential operators in the context of locally supersymmetric models of flavour. In contrast to previous studies we find that the necessary procedure of redefining the fields in order to restore canonically normalised kinetic terms, i.e. canonical normalisation, can lead to significant corrections to the fermion mixing angles (as determined from the superpotential). Such potentially large effects are characteristic of flavour models based on non-Abelian family symmetries, where some of the possible Kähler potential (and superpotential) operators, in particular those associated with the third family, are only mildly suppressed. We investigate under which conditions the messenger sector of such flavour models generates such Kähler potential operators for which the canonical normalisation effects are sizeable, and under which conditions these operators may be absent and canonical normalisation effects are small. As explicit examples for potentially relevant CN effects, we will discuss the corrections to the CKM matrix element |Vcb| as well as corrections to tri-bimaximal neutrino mixing