71 research outputs found

    The canine era : the rise of a biomedical model

    Get PDF
    Since the annotation of its genome a decade ago, the dog has proven to be an excellent model for the study of inherited diseases. A large variety of spontaneous simple and complex phenotypes occur in dogs, providing physiologically relevant models to corresponding human conditions. In addition, gene discovery is facilitated in clinically less heterogeneous purebred dogs with closed population structures because smaller study cohorts and fewer markers are often sufficient to expose causal variants. Here, we review the development of genomic resources from microsatellites to whole-genome sequencing and give examples of successful findings that have followed the technological progress. The increasing amount of whole-genome sequence data warrants better functional annotation of the canine genome to more effectively utilise this unique model to understand genetic contributions in morphological, behavioural and other complex traits.Peer reviewe

    Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis.

    Get PDF
    Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines

    Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    Full text link
    corecore